
 

Abstract 
 

In a low-light scene, we need a high-gain setting or a 

long-exposure setting to avoid a visible flash when we take 

pictures. However, these settings lead to severe degrada-

tions such as high-level noise and/or motion blur. Another 

approach for low-light scene capture is to use an invisible 

flash. In this paper, we propose a novel approach for color 

imaging using a noisy-color image and an invisible flash 

image. The basic idea of the proposed method is that the 

luminance component and the chroma component of a 

color image are estimated from different image sources. 

The luminance component is estimated mainly from the 

invisible flash image via a spectral estimation. The chroma 

component is estimated from the noisy-color image by 

denoising. Experimental comparisons demonstrate that the 

proposed method outperforms both a state-of-the-art single 

image denoising method and an existing method using a 

noisy-color image and an invisible flash image. 

 

1. Introduction 

A visible flash is required when we take pictures of a 

dark or a low-light scene. However, the visible flash is 

unacceptable when we try to take pictures of a nocturnal 

animal or a sleeping baby, because of the strong emission 

of the visible flash. In order to avoid the visible flash, we 

need a high-gain or a long-exposure setting to take pictures 

for the low-light scene. However, these settings meet se-

vere degradations, i.e. significant noise in a high-gain set-

ting and motion blur in a long-exposure setting. Although 

there is a long history of researches on denoising [1-6] and 

deblurring [7, 8], denoising and deblurring are still very 

challenging problems and these single-image-based pro-

cessing are limited. Then, several color imaging methods 

using a visible-flash and no-flash image pair are proposed 

[9, 10]. These color imaging methods perform much better 

than the single-image-based processing. However, as 

mentioned above, in many situations, a strong visible flash 

is unacceptable.  

One of other approaches to avoid the visible flash is to 

use an invisible flash instead. The most promising invisible 

flash is a near-infrared (NIR) flash, because image sensors 

equipped in commercial color cameras usually have some 

sensitivity to the NIR, while humans and many kinds of 

animals do not have any sensitivity to the NIR. Although 

commercial color cameras have a “hot mirror” which re-

flects infrared light, we can easily capture NIR-flash im-

ages by just removing the hot mirror from the camera. 

However, the NIR-flash image does not have color infor-

mation. Color imaging methods using a noisy-color and a 

NIR-flash image pair have been proposed [11-14]. In these 

methods, the NIR-flash image was used as a “guide” image 

which helps to denoise and enhance the noisy-color image. 

(b) NIR-flash image 
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Figure 1: Examples of input and output images, where (a) is the noisy-color image, (b) is the NIR-flash image, (c) is the denoised image of 

the noisy-color image by BM3D, and (d) is the result image of the proposed method using the noisy-color and NIR-flash image pair.  

(a) Noisy-color image (c) BM3D [2] (d) Proposed method 
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It is known that the NIR-flash image and the color image 

for the same scene are strongly correlated to each other, 

especially in high-frequency components. Therefore, the 

edge preserving denoising methods using the NIR-flash 

image have been proposed. A bilateral filter [5] and a WLS 

filter [6] are well known powerful non-linear filters. The 

bilateral filter was extended to a dual bilateral filter by 

using the NIR-flash image as the guide image [11]. The 

WLS filter is also extended to a dual WLS filter [12]. In 

addition, the NIR-flash image was used to enhance the 

details of the denoised color image [13]. In [14], the 

NIR-flash and a near-ultraviolet (UV) flash images were 

used for color image reconstruction. The common concept 

of these methods using the NIR and/or the UV flash image 

is to denoise and enhance the noisy-color image. However, 

even if the NIR-flash image can help denoising, this 

denoising approach has limitation. The denoising approach 

cannot extract fine details from very noisy color images 

perfectly.  

In this paper, we propose a novel color imaging method 

using the noisy-color and the NIR-flash image pair. A color 

image consists of a luminance component and a chroma 

component. The luminance component represents the in-

tensity or total power of the light at each pixel. The chroma 

component represents the color or the shape of the spectral 

distribution at each pixel. The basic idea of the proposed 

method is to extract the luminance component and the 

chroma component from different image sources; the 

NIR-flash image and the noisy-color image. In contrast, 

existing methods [11-14] try to extract both the luminance 

and the chroma components from a single image source 

that is the noisy-color image. We can extract the chroma 

component by applying strong denoising to the noisy-color 

image because it is known that the chroma component is 

dominated by low frequencies. However, we cannot extract 

the luminance component with fine details because it is 

very difficult to distinguish the fine details from the noise. 

Then, we extract the luminance component mainly from the 

NIR-flash image assuming the strong correlation between 

the luminance component and the NIR-flash image. 

Figure 1 shows an example of the resultant color image 

by the single image denoising, BM3D [2], and the proposed 

method. We can find that the proposed method can recon-

struct the fine details with reducing noise. We experimen-

tally demonstrate that the proposed method can generate 

sharp and noise free image from a noisy-color and 

NIR-flash image pair. 

2. Color imaging from different image sources 

The color image consists of the luminance component 

and the chroma component. As shown in Fig. 2, existing 

denoising methods using the noisy-color and NIR-flash 

image pair extract both the luminance and the chroma 

components from the single noisy-color image, although 

those methods effectively use the NIR-flash image as the 

guide image. In contrast, out proposed method generates 

the color image based on the luminance and the chroma 

components extracted from the NIR-flash and the 

noisy-color images, respectively. For the luminance esti-

mation in the proposed method, the estimated chroma is 

used to improve the accuracy of the luminance estimation. 

Figure 2: Conceptual difference between existing methods and our proposed method, where the broken lines represent guide data. Existing 
methods extract both the luminance and the chroma components from the single noisy-color image, while the proposed method extracts 

the chroma component from the noisy-color image, and the luminance component mainly from the NIR-flash image. 

(a) Existing methods (b) Proposed method 



Figure 3: The processing flow of our proposed method. 

Figure 3 shows the image processing flow of the proposed 

method. 

Before explaining the proposed method, we clarify the 

luminance and chroma representation. There are various 

color space models which represent the luminance com-

ponent and the chroma component [15]. The most popular 

color representation is the RGB representation by three 

primary color components; R, G, and B. The data of the 

RGB representation can be considered as the 

three-dimensional Euclidian data,  . In this paper, we 

consider that the luminance is Y channel of YCbCr color 

space. The RGB data normalized by the luminance pro-

vides the chroma information. The RGB data can be de-

composed into the luminance component and the chroma 

component or the luminance-normalized RGB data as 
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where   is the vector which represents the coefficients of 

transform from RGB to Y,   represents the transpose op-

erator,   represents the luminance component of the RGB 

data, and   is the luminance-normalized RGB data which 

represents the chroma. In the proposed method, the lumi-

nance component,  , is extracted from the NIR-flash image 

and the chroma component,  , is extracted from the 

noisy-color image. Then, the extracted luminance compo-

nents and the chroma components are fused into the output 

color image.  

2.1. Chroma extraction from the noisy-color image 

We apply a denoising method to the noisy-color image 

with strong denoising parameters. The strong denoising 

produces over-smoothed color image without fine details. 

However, the over-smoothed color image is sufficient to 

extract the chroma component, because the chroma com-

ponent is dominated by low frequencies. In this paper, we 

use the BM3D [2] for this denoising. The chroma compo-

nent at each pixel is estimated by 
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where     represents the RGB data of the denoised 

noisy-color image. We can easily extract the chroma 

component from the noisy-color image by just applying the 

denoising and the luminance normalization. However, it is 

very challenging to extract the luminance component with 

fine details from the noisy-color image. 

2.2. Color image fusion 

The NIR-flash image has strong correlation to the lu-

minance component especially in the high-frequency 

component. The most naive luminance extraction from the 

NIR-flash image is to directly use the NIR-flash image as 

the luminance [16]. Obviously, the NIR-flash image is not 

exactly the same as the luminance component. However, 

this naive estimation is sufficient for a certain purpose. We 

also discuss the luminance estimation method to improve 

image quality in the next section. 

The final output of the proposed method can be ex-

pressed as 

 

 
          

   

     
   (3) 

 

where    is the estimated luminance value. We can obtain 



the output image by applying this process for each pixel. 

3. Luminance estimation 

In the previous section, we assume that the NIR-flash 

image can be used as the luminance component. This sim-

ple assumption is good enough for some applications. 

However, it is also true that this simple assumption pro-

duces wrong luminance. Therefore, we propose a method 

to estimate the luminance based on the NIR-flash image 

value. 

3.1. Luminance estimation via spectral estimation 

If we know the spectral reflectance of the target object, 

we can easily calculate the NIR-flash image value by as-

suming the spectral density of the NIR-flash and the sensor 

sensitivity. Although the spectral reflectance is usually 

estimated with multi-spectral images, this reflectance es-

timation method can be applied to the RGB data. We follow 

the same manner of [17] to estimate the spectral reflectance, 

assuming that an ambient light is white. The resultant es-

timated spectral reflectance can be expressed by the linear 

transformation as 
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where   is the discretized spectral reflectance, and   is the 

spectral estimation matrix which transforms the RGB data 

to the discretized spectral reflectance. Once we can esti-

mate the spectral reflectance from the RGB data, we can 

easily estimate the NIR-flash image value from the esti-

mated spectral reflectance as shown in Fig. 4. The 

NIR-flash image value,  , can be estimated by 
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where   is the vector which represents the sensitivity of the 

sensor,      is the diagonal matrix which represents the 

spectral distribution of the NIR-flash, and   is the vector 

which maps the RGB data to the NIR-flash image value.  

In the proposed method, we only observe the NIR-flash 

image value,  , and the luminance-normalized RGB data, 

 , which is extracted from the noisy-color image. For given 

these data, we can estimate the luminance by minimizing 

the cost function: 
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3.2. Mapping vector learning 

As described in the previous section, we can estimate the 

luminance with the NIR-flash image value, the lumi-

nance-normalized RGB data, and the mapping vector 

which maps the RGB data to the NIR-flash image value. 

The mapping vector can be learned with learning data pairs 

of the RGB and the NIR-flash image values.  

In this paper, we first generate the learning data pairs 

from the Munsell colors matt reflectance database [18] 

assuming that the ambient light is white. For the learning 

data pair generation, we use the typical spectral sensitivities 

of the color camera and the spectral distribution of the NIR 

light. The mapping vector can be learned by 

 

 

         
 

            
 

 

   

  (7) 

 

Figure 5: Schematic of transform from the RGB data to the 

NIR-flash image value via spectral estimation. 

Figure 4: The processing flow for learning the mapping vector. 

The clustering is based on hue and saturation of the RGB data. 



where   is the number of the learning data pairs,    is  -th 

NIR-flash image value, and    is  -th RGB data. 

As mentioned above, the mapping vector is derived via 

the spectral estimation. However, the spectral estimation 

from the RGB data is very challenging, because the RGB 

data only has three primary spectral components. Three 

spectral components are too few to estimate the spectral 

distribution. It is reported that the clustering-and-mapping 

approach can improve the performance of the spectral 

estimation [19]. Then, we apply the same approach to im-

prove the performance of the luminance estimation.  

First, the RGB data and the NIR-flash image value pairs 

are clustered based on the hue and the saturation of the 

RGB data as shown in Fig. 5. Then, for each cluster, the 

mapping vector is learned by Eq. (7). 

In the luminance estimation phase, the lumi-

nance-normalized RGB data is first assigned to the nearest 

cluster. The mapping vectors are assigned to all pixel lo-

cations. We apply spatial smoothing to the mapping vectors 

to reduce discontinuities at borders of clusters. Then, the 

luminance is estimated based on the smoothed mapping 

vector. 

4. Experiments 

In [11, 12, 13], they used a multi-camera system to 

simultaneously capture the color image and the NIR-flash 

image. In this paper, we adopt a single camera system with 

a NIR-flash [14], because the single camera system is much 

simpler than the multi-camera system. We use the Canon 

EOS 7D digital still camera with removing the hot mirror to 

capture the NIR-flash image. We assume the noisy-color 

image and the NIR-flash image are perfectly aligned. The 

image alignment for a dynamic scene is one of our feature 

works.  

4.1. Validation of the proposed luminance estimation 

 In this paper, we have described three types of luminance 

estimation methods; (1) the naive estimation which directly 

uses the NIR-flash image value as the luminance, (2) the 

luminance estimation from the luminance-normalized RGB 

data and the NIR-flash image value without clustering, and 

(3) the luminance estimation from the lumi-

nance-normalized RGB data and the NIR-flash image value 

with clustering. The differences appear only in the lumi-

nance components. Figure 6 shows the comparison of three 

luminance estimation methods. The left-side numbers in 

each image represent the average luminances of the input 

noisy-color image and the right-side numbers represent the 

average estimated luminances. From these comparisons, 

we can find that the luminance estimation with the clus-

tering provides the closest estimation among three methods. 

Then, we use the luminance estimation with the clustering 

for later experiments. 

4.2.  Comparisons with existing methods 

In this section, we compare the proposed method with the 

state-of-the-art denoising algorithm, BM3D [2], and the 

existing method using a noisy-color and NIR-flash image 

pair [11]. Figure 7 shows the visual comparisons for two 

scenes. 

In general, denoising using a weak denoising parameter 

yields finely-detailed but still noisy results, and denoising 

using a strong denoising parameter yields less-noise but 

over-smoothed results. It is a trade-off problem. We can see 

that the denoising results in Fig. 7 (c) and (j) are 

over-smoothed and still disturbed by the noise. 

As shown in Fig. 7 (d) and (k), Bennett’s method [11] 

using the noisy-color and the NIR-flash image pair pro-

vides better results than single-image-based denoising 

since the NIR-flash image helps to enhance the image 

quality. However, the details of the result by Bennett’s 

method are blurred compared to that of the results of the 

proposed method. For example, the proposed method can 

recover the fine texture of the ball in (f) and the sharp 

characters in (m). 

  

Figure 6: Comparison of three luminance estimation methods, 
where the left-side of each image is the input noisy color image, the 

right-side of each image is the estimated luminance. The numbers 

in each image represent average luminances around them.  

(a) Naive estimation (b) Without clustering 

(c) With clustering 



Figure 7: Comparisons of the proposed method with the BM3D denoising and Bennett’s method. 

(b) NIR-flash image (a) Noisy-color image 

(c) BM3D [2] 

(f) Proposed method 

(estimation with clustering) 

(d) Bennett [11] (j) BM3D [2] 

(i) NIR-flash image (h) Noisy-color image 

(k) Bennett [11] 

(m) Proposed method 

(estimation with clustering) 
(e) Proposed method 

(naïve estimation) 

(g) Long exposure 

(l) Proposed method 

(naïve estimation) 

(n) Long exposure 

  



Figure 8: Limitation of proposed method. 

(a) NIR-Flash image (b) Noisy-color image (c) Proposed method (d) Long-exposure 

4.3. Limitation 

We assume there is a strong correlation between the 

luminance component and the NIR-flash image. However,  

the assumption is not always true in some cases. We show 

an example of limitation in Fig. 8. We can see the result of 

our proposed method in Fig. 8 (c) significantly differs from 

the image taken by long-exposure setting in Fig. 8 (d). The 

reason of these differences is that the paint of the T-shirt 

does not reflect NIR. Then the NIR-flash image has no 

correlation to the luminance component. In such cases, our 

assumption fails and our method yields different result 

from that of the long-exposure setting. 

5. Conclusions 

We have proposed the novel color imaging method for 

low-light scene photography. Our proposed method ex-

tracts the luminance and the chroma components from 

different image sources; the NIR-flash image and the 

noisy-color image. The luminance component is estimated 

from the NIR-flash image via spectral estimation. We apply 

denoising and luminance normalization to the noisy-color 

image to extract the chroma component. Then, the esti-

mated luminance and chroma components are fused to the 

color image. The experimental comparisons demonstrate 

that the proposed method provides sharp results without 

noise and color artifacts compared to the state-of-the-art 

single image denoising and the existing method using the 

noisy-color and NIR-flash image pair. 

Our future study includes the image alignment between 

the color image and the NIR-flash image for a dynamic 

scene. 
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