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Abstract. Color correction is one of the most essential camera imaging operations that trans-
forms a camera-specific RGB color space to a standard color space, typically the XYZ or the
sRGB color space. Linear color correction (LCC) and polynomial color correction (PCC) are two
widely used methods; they perform the color space transformation using a color correction
matrix. Owing to the use of high-order terms, PCC generally achieves lower colorimetric errors
than LCC. However, PCC amplifies noise more severely than LCC. Consequently, for noisy
images, there exists a trade-off between LCC and PCC regarding color fidelity and noise ampli-
fication. We propose a color correction framework called tunable color correction (TCC) that
enables us to tune the color correction matrix between the LCC and the PCC models. We also
derive a mean squared error calculation model of PCC that enables us to select the best trade-off
balance in the TCC framework. We experimentally demonstrate that TCC effectively balances
the trade-off for noisy images and outperforms LCC and PCC. We also generalize TCC to multi-
spectral cases and demonstrate its effectiveness by taking the color correction for an RGB-near-
infrared sensor as an example. © 2020 SPIE and IS&T [DOI: 10.1117/1.JEI.29.3.033012]
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1 Introduction

In color digital cameras, the spectral sensitivity functions of RGB color filters are device-
dependent and usually differ from those of the human visual system. Therefore, color correction
or colorimetric characterization is an essential camera imaging operation that transforms a
device-dependent RGB color space to a standard or a desired color space, typically the device-
independent XYZ or the display sRGB color space.1,2

The research on color correction has a long history, and many color correction methods,
including least-squares regression-based methods,2–6 look-up-table-based methods,7–12 and neu-
ral network-based methods,13–16 have been proposed. Among these methods, linear color cor-
rection (LCC)2–4 and polynomial color correction (PCC)5 are the two most widely used methods.
LCC is performed by multiplying camera RGB values by a linear 3 × 3 color correction matrix.
In contrast, PCC exploits high-order terms in addition to the first-order linear terms used in LCC,
resulting in a larger matrix size depending on the polynomial order. In LCC and PCC, the color
correction matrix is calculated by least-squares regression to minimize the mean colorimetric
error for training samples, typically color patches in a colorchecker.

It is known that, when a captured image contains noise, LCC and PCC amplify the noise.
Therefore, one challenge of the color correction is to suppress the noise amplification while
preserving high color fidelity. Owing to the use of high-order terms, PCC generally achieves
lower colorimetric errors than LCC. However, PCC amplifies the noise more severely than LCC
because the high-order terms usually cause larger noise amplification. Consequently, for noisy
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images, there exists a trade-off between LCC and PCC regarding color fidelity and noise
amplification.

In this paper, we propose a color correction framework called tunable color correction (TCC)
that enables us to tune the color correction matrix between the LCC and the PCC models by a
tuning parameter. We also derive a mean squared error (MSE) calculation model of PCC that
enables us to select an optimal tuning parameter value for TCC, providing the best trade-off
balance between LCC and PCC. We experimentally demonstrate that TCC effectively balances
the trade-off regarding color fidelity and noise amplification and outperforms LCC and PCC. We
also generalize TCC to multispectral cases and demonstrate its effectiveness by taking the color
correction for an RGB-near-infrared (RGB-NIR) sensor as an example.

The effect of noise amplification on color correction has been analyzed in some works.17–21

These analyses are generally based on the LCC model to mathematically derive an optimal color
correction matrix for noisy images. One exception is the work by Burns and Berns22 in which
noise amplification effects on nonlinear transformations are analyzed in a general form using a
Taylor series. Unlike these previous works, our TCC framework and MSE calculation model
provide a method and analysis to derive an optimal color correction matrix across the LCC and
the PCC models.

The preliminary version of this paper is published in the conference proceedings.23 In this
paper, we provide three major extensions as follows: (i) we describe the detailed formulation of
the TCC framework, including a more complete derivation of the MSE calculation model of
PCC. (ii) We generalize the TCC framework to multispectral cases and demonstrate its effec-
tiveness for an RGB-NIR sensor. (iii) We report extensive experimental results, including the
performance comparisons with state-of-the-art color correction methods other than LCC
and PCC.

The remainder of this paper is organized as follows. Section 2 briefly reviews existing color
correction methods. Section 3 introduces the trade-off between LCC and PCC. Section 4 details
our proposed TCC framework and MSE calculation model. Section 5 reports experimental
results, and Sec. 6 concludes the paper.

2 Related Works

Existing color correction methods can roughly be classified into three categories: (i) least-
squares regression-based methods,2–6 (ii) look-up-table-based methods,7–12 and (iii) neural net-
work-based methods.13–16 The focus of this paper is least-squares regression-based methods,
which are widely adopted in camera imaging pipelines due to the simplicity of the algorithm
and implementation. In what follows, we briefly review existing regression-based methods based
on a color correction matrix.

2.1 Methods Without Considering Noise

LCC is the most widely used method; it performs the color space transformation by multiplying
camera RGB values by a linear 3 × 3 color correction matrix.2–4 Many existing works have
extended LCC to address specific problems. Finlayson and Drew24 proposed a constrained
least-squares regression, which constrains such that the color of a particular surface, typically
a white surface, is reproduced without errors. Bianco et al.25–27 proposed an improved color
correction pipeline that considers white balancing errors. Zhang and Liu28 and Vazquez-
Corral et al.29 proposed a color correction model that considers the human color perception
or preference. Funt and Bastani30 and Finlayson et al.31,32 proposed an intensity independent
or compensated method to alleviate the shading effect. Andersen and Hardeberg,33 Andersen
and Connah,34 and Mackiewicz et al.35 proposed a piece-wise LCC model based on hue planes
to improve color reproduction accuracy. Finlayson and Drew36 proposed a method without the
need for training samples based on a statistical assumption of the spectral reflectance, which was
also exploited in a spectral reflectance estimation-based color correction method.37

PCC5 is another widely used method; it extends LCC by exploiting high-order terms in addi-
tion to the first-order linear terms used in LCC. The matrix size of PCC is larger than that of LCC
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and depends on the used polynomial terms. Several works have extended PCC. Bianco et al.38,39

proposed a genetic algorithm-based method to automatically find the best set of polynomial
terms. Finlayson et al.6 proposed root-polynomial color correction (RPCC) that modified
PCC by taking the k’th root of each k-degree term to achieve exposure independence of the
color correction matrix.

The above-mentioned methods have successfully addressed each problem of color correc-
tion. However, these methods do not consider the noise effect. Although some recent methods6,34

experimentally demonstrate the robustness to noise, they still do not explicitly model the noise
effect.

2.2 Methods Considering Noise

Some existing works have analyzed the noise effect on a color measurement system, mostly in
the literature of spectral sensitivity designs40–44 and color correction.17–22 The purpose of spectral
sensitivity designs is to mathematically derive an optimal set of color filters in the presence of
noise, whereas the purpose of color correction is to derive an optimal color correction matrix for
a given set of color filters or measurements. The latter is our focus and is reviewed below.

Tan and Acharya17 and Barnhöfer et al.18 mathematically described the trade-off between color
fidelity and noise amplification in LCC and presented a method of calculating an optimal LCC
matrix in terms of MSE. Quan19 derived a comprehensive error metric for LCC considering the
signal-dependent Poisson noise. Lim and Silverstein20 proposed a method to derive an optimal
LCC matrix in a spatially varying manner based on the covariance matrix calculation of observed
color signals within each local window. Trussell and Vrhel21 proposed a locally adaptive LCC
method considering the signal-dependent Poisson noise. Another class of methods addressed the
noise issue by solving an optimization problem45,46 or incorporating additional signal processing
steps such as average filtering,47,48 discrete cosine transform,49 and denoising.50

As an analytical approach, some works17–21 mathematically modeled the color correction
problem considering the noise. However, they are not beyond the scope of LCC. To the best
of our knowledge, the only exception is the work by Burns and Berns,22 in which the noise effect
on a nonlinear transformation was analyzed in a very general form using a Taylor series. Unlike
these works, our TCC framework provides a mathematical method and analysis to explicitly
derive an optimal color correction matrix across the LCC and the nonlinear PCC models.

3 Trade-Off between LCC and PCC

In this section, we first introduce a general formulation of LCC and PCC and present our color
correction setup. We then exemplify the trade-off between LCC and PCC using simulated color-
checker images.

3.1 General Formulation

LCC and PCC are generally formulated in matrix form as

EQ-TARGET;temp:intralink-;e001;116;223q ¼ Mp; (1)

where p ∈ RN is an input N-dimensional vector formed by camera RGB values, q ∈ R3 is an
output three-dimensional color-corrected vector in a target color space, andM ∈ R3×N is a color
correction matrix. The dimension number N depends on the color correction model and how
many terms are used for the color correction. In this work, we consider that LCC and PCC
include the bias term. In that case, the input vector of LCC is formed as

EQ-TARGET;temp:intralink-;e002;116;130plcc ¼ ½1; pR; pG; pB�T; (2)

where pR, pG, and pB are the camera intensity values of R,G, and B channels, respectively. PCC
uses higher-order terms in addition to the first-order linear terms. For example, the input vector
of the second-order PCC is formed as
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EQ-TARGET;temp:intralink-;e003;116;735ppcc ¼ ½1; pR; pG; pB; pRpG; pRpB; pGpB; p2
R; p

2
G; p

2
B�T: (3)

In LCC and PCC, the color correction matrix is typically calculated using training color
patches of a colorchecker by least-squares regression as

EQ-TARGET;temp:intralink-;e004;116;687M̂ ¼ arg min
M

kQt −MPtk2F ¼ QtP�
t ; (4)

where k · k2F is the Frobenius norm, Qt ∈ R3×K is a matrix containing the color vectors of K
training patches in the target color space, Pt ∈ RN×K is a matrix containing the corresponding
input vectors formed by the camera RGB values of the patches, and P�

t ∈ RK×N is the pseudoin-

verse matrix of Pt. The color correction matrix M̂ ∈ R3×N is calculated to minimize the mean
colorimetric error for the training patches, typically by assuming noise-free camera RGB values
obtained in a color calibration phase. However, such a precalculated matrix amplifies noise when
applied to noisy images in a real situation.

3.2 Color Correction Setup

In this work, we focus on the second-order PCC to design our proposed TCC for two reasons:
(i) As experimentally reported in some existing works,16,27 higher-order PCC does not necessarily
provide lower colorimetric errors due to the over-fitting problem caused by the statistical
differences between the training and the test samples. (ii) We observe that higher-order PCC ampli-
fies the noise too significantly and is not beneficial when noisy images are considered color cor-
rection inputs. In what follows, we denote the second-order PCC as PCC for notation simplicity.

We consider the target color space to be the sRGB color space for the displaying purpose. We
omit auto white balancing and directly transform the camera RGB values under some recording
illumination to the sRGB values under the canonical CIE D65 illumination. As in some existing
works,20,40 we also assume white Gaussian noise due to its simplicity for model derivation,
though real sensor noise is better modeled Poisson–Gaussian noise.51

3.3 Trade-off Examples

To show the trade-off between LCC and PCC, we performed an experiment using simulated
X-Rite ColorChecker SG images, where 96 patches (We removed white, gray, and black patches
repeated at the borders of the colorchecker.) of 200 × 200 pixels were simulated as shown in
Fig. 1. The target sRGB image of Fig. 1(a) was simulated using the spectral power distribution of
the CIE D65 illumination52 and the spectral reflectance profiles of the 96 patches.53 The XYZ

values were first calculated using the XYZ color matching functions52 and then transformed to
the sRGB values by the XYZ-to-sRGB transformation matrix. The camera RGB image of
Fig. 1(b) was simulated using the camera sensitivity functions of an Olympus E-PL2 camera54

and the CIE A (incandescent) illumination.52 Additive white Gaussian noise was added to each
color channel to simulate the noisy camera RGB image.

Color correction was then performed to transform the noisy camera RGB image to the target
sRGB image. The results of LCC and PCC are shown in Figs. 1(c) and 1(f), respectively. To
evaluate the color accuracy and the amplified noise of the results, we calculated color bias and
color standard deviation. For all pixels in each color patch, the mean intensity of each channel
ðμR; μG; μBÞ and the standard deviation of each channel ðσ̂R; σ̂G; σ̂BÞ were calculated using the
200 × 200 color corrected samples. Then the color bias and the color standard deviation for each
patch was calculated as

EQ-TARGET;temp:intralink-;e005;116;151

color bias ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðIR − μRÞ2 þ ðIG − μGÞ2 þ ðIB − μBÞ2

q
;

color standard deviation ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̂2R þ σ̂2G þ σ̂2B

q
; (5)

where ðIR; IG; IBÞ are the ground-truth sRGB values for the patch. Using the above equations,
MSE for each patch was then calculated as
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EQ-TARGET;temp:intralink-;e006;116;404

MSE ¼ mean

�X
kground truth sRGBvalues − color corrected valuesk2

�
;

¼ color bias2 þ color standard deviation2; (6)

where MSE can be derived from the square of the color bias and the square of the color standard
deviation assuming zero-mean Gaussian error distribution.55

As we observe from Figs. 1(d) and 1(g), PCC generally achieves lower color bias errors. In
contrast, as we observe from Figs. 1(e) and 1(h), PCC causes higher color standard deviation,
i.e., larger noise amplification. The mean of all patches are shown in the boxes on the right in
Fig. 1. From those mean values, we observe the trade-off between LCC and PCC regarding the
color fidelity and the noise amplification. To select the best trade-off balance between LCC and
PCC by our TCC framework, we evaluate MSE or root MSE (i.e., RMSE ¼ ffiffiffiffiffiffiffiffiffiffi

MSE
p

), which is
considered a general metric that includes the evaluation of both the color bias error and the color
standard deviation, as expressed in Eq. (6). Later in this paper, we will show how MSE is mod-
eled in the TCC framework.

4 Proposed Tunable Color Correction

4.1 TCC Framework Overview

Figure 2 shows the overview of our proposed TCC framework. The keys of TCC are two models:
the TCC matrix calculation model and the MSE calculation model. The TCC matrix model is
proposed to make the color correction matrix tunable between the LCC and the PCC models by a

tuning parameter λ. The MSE model is derived to select an optimal parameter value λ̂ that pro-
vides the best trade-off balance between the LCC and the PCC models. The color correction

matrix calculated with the optimal parameter value M̂ðλ̂Þ is used to transform the input noisy
camera RGB image. We detail each calculation model below.

(a) (b)

(c) (d) (e)

(f) (g) (h)

Color bias: 36.21
Color Std.: 5.54
RMSE: 36.63

Color bias: 6.37
Color Std.: 15.16
RMSE: 16.44

Color bias: 4.82
Color Std.: 15.76
RMSE: 16.48

Fig. 1 Trade-off between LCC and PCC regarding color fidelity and noise amplification. Color
correction was performed to transform the noisy camera RGB image (b) to the target sRGB image
(a). The images (c) and (f) show the color correction results by LCC and PCC. As we observe in
(d) and (g), PCC generally achieves lower color bias errors. In contrast, as we observe in (e) and
(h), PCC causes higher color standard deviation (Std.). The mean values are shown in the boxes
on the right.
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4.2 TCC Matrix Calculation Model

Our proposed TCC is motivated by the observation that large color correction coefficients for
high-order terms of PCC cause large noise amplification. This observation leads us to calculate
our proposed TCC matrix as

EQ-TARGET;temp:intralink-;e007;116;457M̂ðλÞ ¼ arg min
M

�
kQt −MPtk2F þ 1

λ
kW ∘ Mk2F

�
; (7)

where M̂ðλÞ ∈ R3×N is the TCC matrix. The resultant TCC matrix by our formulation takes the
same form and size as the PCC matrix. As described in Sec. 3.2, in this paper, we focus on
designing the TCC matrix tunable between the LCC matrix and the second-order PCC matrix
with the input forms of Eqs. (2) and (3), respectively. In this case, the size of the derived TCC
matrix is the same as that of the second-order PCC matrix, i.e., 3 × 10 (N ¼ 10), according to the
second-order PCC input form of Eq. (3). The first term of Eq. (7) is the data fidelity term, which
takes the same form as Eq. (4) assuming the second-order PCC input form of Eq. (3). The second
term is our proposed constrain term, where ∘ represents the element-wise product andW ∈ R3×N

is a binary weighting matrix designed to constrain the coefficients for the high-order terms.
Specifically, in the case of the considered second-order PCC input form of Eq. (3), the weighting
matrix is designed as

EQ-TARGET;temp:intralink-;e008;116;277W ¼
2
4 0 0 0 0 1 1 1 1 1 1

0 0 0 0 1 1 1 1 1 1

0 0 0 0 1 1 1 1 1 1

3
5; (8)

where the binary weights are applied to the coefficients for the second-order terms.
Our TCC matrix has the following interesting properties:

EQ-TARGET;temp:intralink-;e009;116;197

lim
λ→0

M̂ðλÞ ¼ ½ M̂lcc 0 �;

lim
λ→∞

M̂ðλÞ ¼ M̂pcc; (9)

where M̂lcc ∈ R3×4 is the LCC matrix derived by the standard formulation of Eq. (4) using the

input form of Eq. (2) and M̂pcc ∈ R3×N is the second-order PCC matrix derived by Eq. (4) using
the input form of Eq. (3). The first equation indicates that, if λ → 0, the resultant TCC matrix
½ M̂lcc 0 � ∈ R3×N , in which 0 ∈ R3×ðN−4Þ is the zero matrix corresponding to the coefficients

for the second-order terms, identically works as the standard LCC matrix M̂lcc. By contrast, the

Color correction 
matrix 

Training samples

Input noisy camera RGB

Noise level
estimation

Noise level

Optimal value

Color 
correction

Output color-corrected sRGB

Target sRGBCamera RGB

Color correction 
matrix calculation

TCC model

Tuning parameter
value selection

MSE model TCC matrix

Fig. 2 The overview of our proposed TCC framework in which we propose two models: the TCC
matrix calculation model (TCC model) and the MSE calculation model (MSE model). The TCC
model is proposed to make the color correction matrix tunable between the LCC and the PCC
models by a tuning parameter λ. The MSE model is derived to select an optimal parameter value
λ̂ that provides the best trade-off balance between the LCC and the PCC models. The color cor-
rection matrix calculated with the optimal parameter value M̂ðλ̂Þ is used to transform the input noisy
camera RGB image.
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second equation indicates that, if λ → ∞, the resultant TCC matrix is identical to the standard

PCC matrix M̂pcc. Therefore, the properties in Eq. (9) indicate that the TCC matrix is tunable
between the LCC and the PCC models by a tuning parameter λ.

Equation (7) is solved in the vectorized form as

EQ-TARGET;temp:intralink-;e010;116;684m̂vðλÞ ¼
�
PT
vPv þ

1

λ
WT

dWd

�
−1
PT
vqv; (10)

where m̂vðλÞ ∈ R3N and qv ∈ R3K are the vectorized form of M̂ðλÞ and Qt, respectively. Pv ¼
½P1;P2; : : : ;PK� ∈ R3K×3N is the matrix containing the input PCC vectors of K training samples,
where Pk ∈ R3×3N is the block diagonal matrix with diagonal elements that are the input vector
for k’th training sample andWd ∈ R3N×3N is the diagonal matrix with diagonal elements that are
the weights of W.

4.3 MSE Calculation Model

We here derive the MSE calculation model for selecting an optimal tuning parameter value that
provides the best trade-off balance in terms of MSE. Based on the MSE calculation for each

training sample, the optimal value λ̂ is selected as

EQ-TARGET;temp:intralink-;e011;116;500λ̂ ¼ arg min
λ

XK
k¼1

MSEkðλÞ; (11)

where λ̂ minimizes the sum of MSEs for all training samples. In the presence of noise, MSE for
the k’th sample is estimated as

EQ-TARGET;temp:intralink-;e012;116;424MSEkðλÞ ¼ Eðkqk − M̂ðλÞpkk22Þ; (12)

where Eð·Þ is the expectation operator, qk is the target sRGB vector, and pk is a random variable
representing the input vector with noise. Let μpk ∈ RN be the expectation of pk, i.e., μpk ¼ EðpkÞ
and Σpk be the variance-covariance matrix for the input noisy vector. Then Eq. (12) is rewritten as

EQ-TARGET;temp:intralink-;e013;116;352MSEkðλÞ ¼ kqk − M̂ðλÞμpkk22 þ tr½M̂ðλÞΣpkM̂ðλÞT�; (13)

where tr½·� is the trace operator. The first term represents the expected color bias error, and the
second term represents the noise variance of the color-corrected values.

Equation (13) indicates that MSE for each training sample is calculated from the expectation
vector μpk and the variance-covariance matrix Σpk . Such calculations have been performed for
LCC.17,19 However, to the best of our knowledge, none of the existing works have explicitly
extended the calculations to PCC. In what follows, we describe the calculation of μpk and
Σpk for the second-order PCC.

We first derive the expectation of the input vector of the form of the second-order PCC in
Eq. (3). If an input image contains noise, the noisy camera RGB values are represented as

EQ-TARGET;temp:intralink-;e014;116;207pR ¼ gR þ nR; pG ¼ gG þ nG; pB ¼ gB þ nB; (14)

where gR, gG, and gB are latent noise-free camera RGB values and nR, nG, and nB represent the
noise of each color channel.

In the following derivation, we assume that the noise of each channel is signal-independent
zero-mean Gaussian noise and the noise variance of each channel is σ2R, σ

2
G, or σ

2
B. We also

assume that the noise of each channel is independent of the latent noise-free camera RGB values
and independent of each other. These assumptions have often been made in the literature.20,40

Based on the assumptions, the expectation vector μpk ¼ EðppccÞ is derived as
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EQ-TARGET;temp:intralink-;e015;116;735μpk ¼ ½1; gR; gG; gB; gRgG; gRgB; gGgB; g2R þ σ2R; g
2
G þ σ2G; g

2
B þ σ2B�T: (15)

In Eq. (15) and all of the following derivations included in the Appendix, we omit the training
sample index k from all vector and matrix elements (e.g., gR, gG, gB, and so on) for notation
simplicity without loss of generality. The detailed derivations of the expectation of each linear,
cross, and squared term of Eq. (15) are found in the Appendix.

We next derive the variance-covariance matrix Σpk . Since the bias term does not affect the
calculation of the variance-covariance matrix, we rewrite the second term of Eq. (13) as

EQ-TARGET;temp:intralink-;e016;116;638tr½M̂ðλÞΣpkM̂ðλÞT� ¼ tr½M̃ðλÞΣ̃pkM̃ðλÞT�; (16)

where M̃ðλÞ ∈ R3×N−1 and Σ̃pk ∈ RðN−1Þ×ðN−1Þ are the matrices with the removal of the bias

term-related components. With this notation, the variance-covariance matrix ~Σpk is derived
as Eqs. (18) and (19), where Vð·Þ is the variance operator, Cð·; ·Þ is the covariance operator,
and the variables of the input vector are rewritten as

EQ-TARGET;temp:intralink-;e017;116;551

ppcc ¼ ½1; pR; pG; pB; pRpG; pRpB; pGpB; p2
R; p

2
G; p

2
B�T

¼ ½1; pR; pG; pB; pRG; pRB; pGB; pR2 ; pG2 ; pB2 �T: (17)

The diagonal elements of ~Σpk are the variance of the variables, and the off-diagonal elements
are the covariances between all possible pairs of the variables. The detailed derivations of each
variance or covariance component are found in the Appendix. Using Eqs. (13), (15), (16), and
(19), we calculate MSE for each training sample to find an optimal tuning parameter value:

EQ-TARGET;temp:intralink-;e018;116;449

Σpk

¼

2
6666666666666666666664

VðpRÞ CðpR;pGÞ CðpR;pBÞ CðpR;pRGÞ CðpR;pRBÞ CðpR;pGBÞ CðpR;pR2 Þ CðpR;pG2 Þ CðpR;pB2 Þ
CðpR;pGÞ VðpGÞ CðpG;pBÞ CðpG;pRGÞ CðpG;pRBÞ CðpG;pGBÞ CðpG;pR2 Þ CðpG;pG2 Þ CðpG;pB2 Þ
CðpR;pBÞ CðpG;pBÞ VðpBÞ CðpB;pRGÞ CðpB;pRBÞ CðpB;pGBÞ CðpB;pR2 Þ CðpB;pG2 Þ CðpB;pB2 Þ
CðpR;pRGÞ CðpG;pRGÞ CðpB;pRGÞ VðpRGÞ CðpRG;pRBÞ CðpRG;pGBÞ CðpRG;pR2 Þ CðpRG;pG2 Þ CðpRG;pB2 Þ
CðpR;pRBÞ CðpG;pRBÞ CðpB;pRBÞ CðpRG;pRBÞ VðpRBÞ CðpRB;pGBÞ CðpRB;pR2 Þ CðpRB;pG2 Þ CðpRB;pB2 Þ
CðpR;pGBÞ CðpG;pGBÞ CðpB;pGBÞ CðpRG;pGBÞ CðpRB;pGBÞ VðpGBÞ CðpGB;pR2 Þ CðpGB;pG2 Þ CðpGB;pB2 Þ
CðpR;pR2 Þ CðpG;pR2 Þ CðpB;pR2 Þ CðpRG;pR2 Þ CðpRB;pR2 Þ CðpGB;pR2 Þ VðpR2 Þ CðpR2 ;pG2 Þ CðpR2 ;pB2 Þ
CðpR;pG2 Þ CðpG;pG2 Þ CðpB;pG2 Þ CðpRG;pG2 Þ CðpRB;pG2 Þ CðpGB;pG2 Þ CðpR2 ;pG2 Þ VðpG2 Þ CðpG2 ;pB2 Þ
CðpR;pB2 Þ CðpG;pB2 Þ CðpB;pB2 Þ CðpRG;pB2 Þ CðpRB;pB2 Þ CðpGB;pB2 Þ CðpR2 ;pB2 Þ CðpG2 ;pB2 Þ VðpB2 Þ

3
777777777777777777777775

;

(18)

EQ-TARGET;temp:intralink-;e019;116;248

¼

2
66666666666666666666666664

σ2R 0 0 gGσ2R gBσ2R 0 2gRσ2R 0 0

0 σ2G 0 gRσ2G 0 gBσ2G 0 2gGσ2G 0

0 0 σ2B 0 gRσ2B gGσ2B 0 0 2gBσ2B

gGσ2R gRσ2G 0 g2Rσ
2
Gþg2Gσ

2
Rþσ2Rσ

2
G gGgBσ2R gRgBσ2G 2gRgGσ2R 2gRgGσ2G 0

gBσ2R 0 gRσ2B gGgBσ2R g2Rσ
2
Bþg2Bσ

2
Rþσ2Rσ

2
B gRgGσ2B 2gRgBσ2R 0 2gRgBσ2B

0 gBσ2G gGσ2B gRgBσ2G gRgGσ2B g2Gσ
2
Bþg2Bσ

2
Gþσ2Gσ

2
B 0 2gGgBσ2G 2gGgBσ2B

2gRσ2R 0 0 2gRgGσ2R 2gRgBσ2R 0 4g2Rσ
2
Rþ2σ4R 0 0

0 2gGσ2G 0 2gRgGσ2G 0 2gGgBσ2G 0 4g2Gσ
2
Gþ2σ4G 0

0 0 2gBσ2B 0 2gRgBσ2B 2gGgBσ2B 0 0 4g2Bσ
2
Bþ2σ4B

3
77777777777777777777777775

:

(19)
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4.4 Generalization to Multispectral Cases

Recent progress of imaging technology has encountered the development of various multispec-
tral imaging systems, such as a four-band RGB-NIR camera53 and a five-band or an eight-band
multispectral camera.56,57 In these systems, the color correction, i.e., the mapping from the sen-
sor-specific multispectral responses to the target color space, is necessary to realize high-fidelity
color visualization.58 In what follows, we generalize the TCC framework to multispectral cases.

As observed from Eqs. (15) and (18), the expectation vector and the variance-covariance
matrix has a clear structure that can naturally be extended to multispectral cases. If we consider
a multispectral case with H bands, the expectation vector is generalized as

EQ-TARGET;temp:intralink-;e020;116;621μpk ¼ ½1; gX1
; : : : ; gXH

; gX1
gX2

; : : : ; gXH−1
gXH

; g2X1
þ σ2X1

; : : : ; g2XH
þ σ2XH

�T; (20)

where fX1; : : : ; XHg represents the band indices. Similarly, the variance-covariance matrix is
generalized as

EQ-TARGET;temp:intralink-;e021;116;563Σ̃pk ¼
2
4C11 C12 C13

C21 C22 C23

C31 C32 C33

3
5; (21)

where each submatrix is structured as

EQ-TARGET;temp:intralink-;e022;116;495

C11 ¼

2
664

VðpX1
Þ · · · CðpX1

; pXH
Þ

..

. . .
. ..

.

CðpX1
; pXH

Þ · · · VðpXH
Þ

3
775;

C22 ¼

2
664

VðpX1X2
Þ · · · CðpX1X2

; pXH−1XH
Þ

..

. . .
. ..

.

CðpX1X2
; pXH−1XH

Þ · · · VðpXH−1XH
Þ

3
775;

C33 ¼

2
6664

VðpX2
1
Þ · · · CðpX2

1
; pX2

H
Þ

..

. . .
. ..

.

CðpX2
1
; pX2

H
Þ · · · VðpX2

H
Þ

3
7775;

C12 ¼ CT
21 ¼

2
6664
CðpX1

; pX1X2
Þ · · · CðpX1

; pXH−1XH
Þ

..

. . .
. ..

.

CðpXH
; pX1X2

Þ · · · CðpXH
; pXH−1XH

Þ

3
7775;

C13 ¼ CT
31 ¼

2
6664
CðpX1

; pX2
1
Þ · · · CðpX1

; pX2
H
Þ

..

. . .
. ..

.

CðpXH
; pX2

1
Þ · · · CðpXH

; pX2
H
Þ

3
7775;

C23 ¼ CT
32 ¼

2
6664

CðpX1X2
; pX2

1
Þ · · · CðpX1X2

; pX2
H
Þ

..

. . .
. ..

.

CðpXH−1XH
; pX2

1
Þ · · · CðpXH−1XH

; pX2
H
Þ

3
7775: (22)

The derivations of each variance or covariance component is similar to the case of RGB color
imaging and are found in the Appendix.

Yamakabe et al.: Tunable color correction for noisy images

Journal of Electronic Imaging 033012-9 May∕Jun 2020 • Vol. 29(3)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 04 Jun 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



5 Experimental Results

5.1 Results on Colorchecker Data

We here demonstrate the property of TCC using simulated X-Rite ColorChecker SG images. As
explained in Sec. 3.3, the target sRGB values (to construct Qt) and the noise-free camera RGB
values under the CIE A illumination (to construct Pt) were simulated using the spectral reflec-
tance profiles of the 96 patches in the colorchecker. The LCC and the PCC matrices were cal-
culated by Eq. (4), and the TCC matrices were calculated by Eq. (7) using a set of tuning
parameter values. To focus on the clarification of the TCC property, we here assumed an ideal
condition that the training and the test samples are the same and the noise variance is known. The
same noise variance was used for all color channels, i.e., σ2R ¼ σ2G ¼ σ2B ¼ σ2.

We first show the effect of different tuning parameter values on TCC. Figure 3 shows the
results of the MSE calculation by Eq. (13) for the TCC matrices with different parameter values.
Each result in Fig. 3 shows the mean of the 96 patches for the case of σ ¼ 4. Figures 3(a)–3(c)
show the color bias error, the color standard deviation, and RMSE, respectively. These values
were calculated by taking the root of the first term, the second term, and the entire equation of
Eq. (13). In Fig. 3, LCC and PCC are equivalent to the cases of lim λ → 0 and lim λ → ∞,
respectively. Figure 3(a) shows that the color bias error of PCC (lim λ → ∞) is lower than that
of LCC (lim λ → 0). This is because of the advantage of using the high-order terms in PCC. In
contrast, Fig. 3(b) shows that the color standard deviation of PCC is larger than that of LCC. This
is because the high-order terms in PCC cause large noise amplification. Figures 3(a) and 3(b)
show that our proposed TCC transitionally moves between LCC and PCC by changing the
parameter value. Figure 3(c) further indicates that there is an optimal parameter value that bal-
ances the trade-off between LCC and PCC and provides the result with the best RMSE perfor-
mance. In TCC, that parameter value is selected based on the derived MSE calculation model
in Sec. 4.3.

Table 1 and Fig. 4 show the RMSE results with different noise levels. For the noise-free and
the low-noise cases, TCC provides results similar to those of PCC, which are better than LCC.
With the increase of the noise level, RMSE of PCC becomes larger than that of LCC due to the
noise amplification. In contrast, TCC consistently provides better results than both LCC and
PCC for various noise levels by taking the best trade-off balance.
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Fig. 3 Results of the MSE calculation by Eq. (13) for the TCCmatrices with different tuning param-
eter values. Each result shows the mean of the 96 patches with σ ¼ 4. (a) Color bias error, (b) color
standard deviation, and (c) RMSE. Note that LCC and PCC are equivalent to the cases of lim λ →
0 and lim λ → ∞, respectively. As shown in (c), there is an optimal point that provides the min-
imium RMSE. That point is selected by our TCC framework.

Table 1 RMSE comparison for the 96 patches of the colorchecker.

σ 0 2 4 6 8 10

LCC 6.37 9.91 16.45 23.62 31.00 38.43

PCC 4.81 9.24 16.49 24.17 31.99 39.88

TCC 4.81 9.17 16.13 23.41 30.81 38.23
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5.2 Results on Hyperspectral Image Dataset

We next evaluate the performance of TCC in comparison with LCC, PCC, and other state-of-the-
art methods. For this purpose, we used a hyperspectral image dataset, which contains 40 scenes
of various objects,53 and considered a more realistic condition that the training and the test sam-
ples are different and the noise variance is estimated from the input noisy camera RGB image. To
make the training and the test samples, we divided the dataset into 20 training scenes and 20 test
scenes. We used the CIE A (incandescent), the CIE D65 (standard), and the CIE F12 (fluores-
cent) illuminations52 and the Olympus E-PL2 camera sensitivity54 to generate the camera RGB
image. The noise variance was estimated using the noise level estimation method by Liu et al.59

We compared TCC with seven methods: LCC, PCC, second-order RPCC,6 hue-plane preserving
color correction (HPPCC),35 homography color correction (HoCC),32 angular minimization
color correction (AMCC),30 and maximum ignorance color correction (MICC),36 which are
implemented in a color correction toolbox.60

Table 2 shows the RMSE comparison for the hyperspectral image dataset, where we evalu-
ated the mean, the median, and the max RMSE of the 20 test scenes. In Table 2, we observe that
TCC provides the lowest mean RMSE for almost all tested situations with various noise levels
and illumination conditions. This result validates the effectiveness of our TCC framework that
tries to take the best trade-off balance based on the MSE calculation model, even in the case that

LCC PCC TCC

Fig. 4 RMSE maps for the colorchecker data. For the noise-free and the low-noise cases, TCC
provides results similar to those of PCC, which are better than LCC. With the increase of the noise
level, RMSE of PCC becomes larger than that of LCC due to the noise amplification. In contrast,
TCC consistently provides better results than both LCC and PCC for various noise levels by taking
the best trade-off balance.
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the training and the test samples are different and the noise level is unknown. For the median
RMSE, TCC provides the best performance for 9 situations among the total 18 situations (6 noise
levels × 3 illuminations), which is followed by HoCC providing the best performance for 4
situations. For the max RMSE, TCC provides the best performance for 10 situations, which
is followed by RPCC providing the best performance for 6 situations. Figure 5 shows the visual
comparison of the RMSE maps for LCC, PCC, and TCC. For the pink and white flower paint
region at the center of the image, LCC generates larger errors than PCC in the case of σ ¼ 0 and
1, whereas PCC generates larger errors than LCC in the case of σ ¼ 2 and 3, due to the trade-off

Fig. 5 Color correction results and RMSE maps for the hyperspectral image data in the case of
RGB color imaging under the CIE A illumination.
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regarding color fidelity and noise amplification. In contrast, TCC consistently generates errors
lower than (or comparable to) LCC and PCC for all noise levels.

5.3 Results on an RGB-NIR Imaging Case

We next evaluate the performance of the generalized TCC for a multispectral case. We took the
four-band RGB-NIR imaging case as an example and considered the mapping from the four-
band RGB-NIR values to the target sRGB values. The same hyperspectral image dataset,53

which covers the spectral range from the visible to the NIR domains (420 to 1000 nm), was
used to simulate the camera RGB-NIR values assuming the RGB-NIR camera sensitivity of
a real sensor.53 Since there is no CIE-defined illumination for the RGB-NIR wavelength domain,
we used the complete white illumination, which has the spectral power of one for all considered
wavelengths. The input vector for the RGB-NIR case was formed as

EQ-TARGET;temp:intralink-;e023;116;579ppcc ¼ ½1; pR; pG; pB; pI; pRpG; pRpB; pRpI; pGpB; pGpI; pBpI; p2
R; p

2
G; p

2
B; p

2
I �T; (23)

where I represents the NIR band. The corresponding binary weighting matrix was formed as

EQ-TARGET;temp:intralink-;e024;116;534W ¼
2
4 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

3
5: (24)

The expectation vector μpk and the variance-covariance matrix ~Σpk were calculated using our
derived MSE calculation model. The same 20 training scenes and 20 test scenes were used to
evaluate the performance, and the same noise level estimation method59 was applied in TCC.

Table 3 shows the RMSE comparison with LCC and PCC for the RGB-NIR imaging case.
We observe that TCC generally provides the best performance also for the RGB-NIR imaging
case. Figure 6 shows the visual comparison of the RMSE maps. As observed for the case of RGB
color imaging, TCC can balance the trade-off between LCC and PCC, especially for the wing
region of the butterfly.

5.4 Limitations

Although our TCC framework can successfully balance the trade-off between LCC and PCC,
there are several limitations. The first limitation is that we currently can optimize MSE in the
XYZ or the sRGB color space, though the LAB color space is desirable for colorimetric evalu-
ation. Unfortunately, the current MSE calculation model cannot handle the LAB color space
since the transformation from XYZ to LAB is highly nonlinear. Although we have tried to use

Table 3 RMSE comparison for the hyperspectral image dataset in the case of RGB-NIR imaging
under the white illumination.

Mean Median Max

σ LCC PCC TCC LCC PCC TCC LCC PCC TCC

0 15.94 14.55 14.54 14.74 12.94 12.93 25.45 27.48 27.46

2 30.44 32.58 29.66 29.83 31.62 29.41 36.32 40.57 35.66

4 54.12 61.11 53.40 53.95 59.45 53.24 57.85 71.81 57.22

6 78.82 92.69 78.00 78.86 90.86 78.09 81.88 109.51 81.16

8 103.60 127.52 102.66 104.29 125.51 103.24 106.94 150.99 106.11

10 128.30 165.99 127.22 129.71 164.76 128.47 132.04 194.76 131.09
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the linearized LAB transformation,18,41 we found that its approximation error is not trivial for
selecting an optimal tuning parameter value in the TCC framework.

The second limitation is that TCC holds the negative sides of PCC such as irradiance
dependence30–32 and hue-plane distortion.33–35 This cannot be avoided because TCC uses the
PCC model in nature. The third limitation is that we currently assume signal-independent
Gaussian noise due to its simplicity for the MSE model derivation, whereas the real noise is
better modeled by signal-dependent Poisson noise.19,21 The accuracy of the noise model and
the complexity of the MSE calculation model may be the trade-off in the TCC framework.
The fourth limitation is that we currently do not consider the mosaic nature of a color filter

Fig. 6 Color correction results and RMSE maps for the hyperspectral image data in the case of
RGB-NIR imaging under the white illumination.

Yamakabe et al.: Tunable color correction for noisy images

Journal of Electronic Imaging 033012-16 May∕Jun 2020 • Vol. 29(3)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 04 Jun 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



array for single-sensor cameras. Our future work is to address this limitation by considering the
pseudo-four-channel division manner proposed by Akiyama et al.61

6 Conclusion

In this paper, we have proposed the TCC framework that enables us to tune the color correction
matrix between the LCC and the PCC models. We also have derived the MSE calculation model
of PCC that enables us to select an optimal tuning parameter value to provide the best trade-off
balance between LCC and PCC. Experimental results for noisy images have demonstrated that
TCC effectively balances the trade-off regarding color fidelity and noise amplification and out-
performs LCC, PCC, and other state-of-the-art color correction methods. We also have gener-
alized the TCC framework to multispectral imaging cases and have demonstrated its
effectiveness by experimental results.

7 Appendix

Here we describe the detailed calculation for deriving each component of Eqs. (15) and (19), i.e.,
each component of the expectation vector μpk and the variance-covariance matrix ~Σpk . For this
purpose, we use the input polynomial vector representation of Eq. (17). We also introduce a
symbolic representation and let X ∈ fR;G; Bg be the index set of the first-order linear terms,
XY ∈ fRG; RB;GBg be that of the second-order cross terms, and X2 ∈ fR2; G2; B2g be that of
the squared terms. Similarly, we use ðX; YÞ, ðXY; XZÞ, ðX2; Y2Þ, ðX; XYÞ, ðX; YZÞ, ðX; X2Þ,
ðX; Y2Þ, ðXY; X2Þ, and ðXY; Z2Þ to represent the index sets of all possible combination patterns
of the linear, cross, and squared terms. The following sections contain the series of calculations
to derive all necessary components.

7.1 Assumptions

Based on the assumption of the signal-independent zero-mean Gaussian noise, the following
equations are defined:

EQ-TARGET;temp:intralink-;sec7.1;116;365

EðnXÞ ¼ 0; VðnXÞ ¼ Eðn2XÞ ¼ σ2X

CðnX; nYÞ ¼ 0; CðgX; nXÞ ¼ 0:

These equations are used for deriving expectation, variance, and covariance components in
the following calculation. In the appendix, we use the mathematical description fð·Þ→0 to re-
present the component that reduces to zero based on the assumption of the noise we made.

7.2 Expectation of Linear, Cross, and Squares Terms

The expectation of each linear, cross, and squared term for deriving the expectation vector μpk of
Eq. (15) is calculated as follows:

EQ-TARGET;temp:intralink-;sec7.2;116;221

EðpX ¼ gX þ nXÞ
¼ EðgXÞ þ EðnXÞ→0;

¼ gX:

E½pXY ¼ ðgX þ nXÞðgY þ nYÞ�
¼ EðgXgYÞ þ EðgXnYÞ→0 þ EðgYnXÞ→0 þ EðnXnYÞ→0;

¼ gXgY:

E½pX2 ¼ ðgX þ nXÞ2�
¼ Eðg2XÞ þ Eð2gXnXÞ→0 þ Eðn2XÞ;
¼ g2X þ σ2X:
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7.3 Variance of Linear, Cross, and Squared Terms

The variance of each linear, cross, and squared term for deriving the diagonal elements of the
variance-covariance matrix ~Σpk of Eq. (19) is calculated as follows:

EQ-TARGET;temp:intralink-;sec7.3;116;690

VðpX ¼ gX þ nXÞ
¼ VðgXÞ→0 þ VðnXÞ þ 2CðgX; nXÞ→0;

¼ σ2X:

V½pXY ¼ ðgX þ nXÞðgY þ nYÞ�
¼ VðgXgYÞ→0 þ VðgXnYÞ þ VðgYnXÞ þ VðnXnYÞ
þ 2CðgXgY; gXnYÞ→0 þ 2CðgXgY; gYnXÞ→0

þ 2CðgXgY; nXnYÞ→0 þ 2CðgXnY; gYnXÞ→0

þ 2CðgXnY; nXnYÞ→0 þ 2CðgYnX; nXnYÞ→0;

¼ g2Xσ
2
Y þ g2Yσ

2
X þ σ2Xσ

2
Y:

V½pX2 ¼ ðgX þ nXÞ2�
¼ Vðg2XÞ→0 þ Vð2gXnXÞ þ Vðn2XÞ
þ 2Cðg2X; 2gXnXÞ→0 þ 2Cðg2X; n2XÞ→0

þ 2Cð2gXnX; n2XÞ→0;

¼ 4g2Xσ
2
X þ 2σ4X;

where we use the following derivation:

EQ-TARGET;temp:intralink-;sec7.3;116;424

Vðn2XÞ ¼ E½ðn2XÞ2� − Eðn2XÞEðn2XÞ;
¼ 3σ4X − σ4X;

¼ 2σ4X:

Cð2gXnX; n2XÞ
¼ Eð2gXn3XÞ→0 − Eð2gXnXÞ→0Eðn2XÞ;
¼ 0:

7.4 Covariance of Linear Terms

The covariance of linear terms used in the submatrix C11 is calculated as follows:

EQ-TARGET;temp:intralink-;sec7.4;116;256

CðpX; pYÞ ¼ EðpXpYÞ − EðpXÞEðpYÞ;
¼ 0;

where we use the following derivation:

EQ-TARGET;temp:intralink-;sec7.4;116;194

EðpXpY ¼ gXgY þ gXnY þ gYnX þ nXnYÞ
¼ EðgXgYÞ þ EðgXnYÞ→0 þ EðgYnXÞ→0 þ EðnXnYÞ→0;

¼ gXgY:

EðpX ¼ gX þ nXÞEðpY ¼ gY þ nYÞ
¼ gXgY:
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7.5 Covariance of Cross Terms

The covariance of cross terms used in the submatrix C22 is calculated as follows:

EQ-TARGET;temp:intralink-;sec7.5;116;704

CðpXY; pXZÞ ¼ EðpXYpXZÞ − EðpXYÞEðpXZÞ;
¼ gYgZσ2X;

where we use the following derivation:

EQ-TARGET;temp:intralink-;sec7.5;116;642

EðpXYpXZÞ ¼ Eðg2XgYgZÞ þ Eðg2XgZnYÞ→0

þ Eð2gXgYgZnXÞ→0 þ Eð2gXgZnXnYÞ→0

þ EðgYgZn2XÞ þ EðgZn2XnYÞ→0

þ Eðg2XgYnZÞ→0 þ Eðg2XnYnZÞ→0

þ Eð2gXgYnXnZÞ→0 þ Eð2gXnXnYnZÞ→0

þ EðgXn2XnZÞ→0 þ Eðn2XnYnZÞ→0;

¼ g2XgYgZ þ gYgZσ2X:

EðpXYÞEðpXZÞ ¼ gXgY · gXgZ;

¼ g2XgYgZ:

7.6 Covariance of Squared Terms

The covariance of squared terms used in the submatrix C33 is calculated as follows:

EQ-TARGET;temp:intralink-;sec7.6;116;424

CðpX2 ; pY2Þ ¼ EðpX2pY2Þ − EðpX2ÞEðpY2Þ;
¼ 0;

where we use the following derivation:

EQ-TARGET;temp:intralink-;sec7.6;116;362

EðpX2pY2Þ ¼ Eðg2Xg2YÞ þ Eð2g2XgYnYÞ→0 þ Eðg2Xn2YÞ
þ Eð2gXg2YnXÞ→0 þ Eð4gXgYnXnYÞ→0

þ Eð2gXnXn2YÞ→0 þ Eðg2Yn2XÞ
þ Eð2gYn2XnYÞ→0 þ Eðn2Xn2YÞ;

¼ g2Xg
2
Y þ g2Xσ

2
Y þ g2Yσ

2
X þ σ2Xσ

2
Y:

EðpX2ÞEðpY2Þ ¼ ðg2X þ σ2XÞðg2Y þ σ2YÞ;
¼ g2Xg

2
Y þ g2Xσ

2
Y þ g2Yσ

2
X þ σ2Xσ

2
Y:

7.7 Covariance Between Linear and Cross Terms

The covariance between linear and cross terms used in the submatrices C12 and C21 is calculated
as follows:

EQ-TARGET;temp:intralink-;sec7.7;116;165

CðpX; pXYÞ ¼ EðpXpXYÞ − EðpXÞEðpXYÞ;
¼ gYσ2X;

where we use the following derivation:
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EQ-TARGET;temp:intralink-;sec7.7;116;735

EðpXpXYÞ ¼ Eðg2XgYÞ þ Eðg2XnYÞ→0 þ Eð2gXgYnXÞ→0

þ Eð2gXnXnYÞ→0 þ EðgYn2XÞ þ Eðn2XnYÞ→0;

¼ g2XgY þ gYσ2X:

EðpXÞEðpXYÞ ¼ gX · ðgXgYÞ;
¼ g2XgY:

In the case that the channel is not shared, the covariance is calculated as follows:

EQ-TARGET;temp:intralink-;sec7.7;116;630

CðpX; pYZÞ ¼ EðpXpYZÞ − EðpXÞEðpYZÞ;
¼ 0 :

where we use the following derivation:

EQ-TARGET;temp:intralink-;sec7.7;116;569

EðpXpYZÞ ¼ EðgXgYgZÞ þ EðgXgYnZÞ→0 þ EðgXgZnYÞ→0

þ EðgXnYnZÞ→0 þ EðgYgZnXÞ→0 þ EðgYnXnZÞ→0

þ EðgZnXnYÞ→0 þ EðnXnYnZÞ→0;

¼ gXgYgZ:

EðpXÞEðpYZÞ ¼ gX · ðgYgZÞ;
¼ gXgYgZ:

7.8 Covariance Between Linear and Squared Terms

The covariance between linear and squared terms used in the submatrices C13 and C31 is calcu-
lated as follows:

EQ-TARGET;temp:intralink-;sec7.8;116;390

CðpX; pX2Þ ¼ EðpXpX2Þ − EðpXÞEðpX2Þ;
¼ 2gXσ2X;

where we use the following derivation:

EQ-TARGET;temp:intralink-;sec7.8;116;328

EðpXpX2Þ ¼ Eðg3XÞ þ Eð3g2XnXÞ→0 þ Eð3gXn2XÞ þ Eðn3XÞ→0;

¼ g3X þ 3gXσ2X:EðpXÞEðpX2Þ
¼ gXðg2X þ σ2XÞ;
¼ g3X þ gXσ2X:

In the case that the channel is not shared, the covariance is calculated as follows:

EQ-TARGET;temp:intralink-;sec7.8;116;231

CðpX; pY2Þ ¼ EðpXpY2Þ − EðpXÞEðpY2Þ;
¼ 0;

where we use the following derivation:

EQ-TARGET;temp:intralink-;sec7.8;116;169

EðpXpY2Þ ¼ EðgXg2YÞ þ Eð2gXgYnYÞ→0 þ EðgXn2YÞ
þ Eðg2YnXÞ→0 þ Eð2gYnXnYÞ→0 þ EðnXn2YÞ→0;

¼ gXg2Y þ gXσ2Y:EðpXÞEðpY2Þ
¼ gXðg2Y þ σ2YÞ;
¼ gXg2Y þ gXσ2Y:
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7.9 Covariance Between Cross and Squared Terms

The covariance between cross and squared terms used in the submatrices C23 and C32 is calcu-
lated as follows:

EQ-TARGET;temp:intralink-;sec7.9;116;692

CðpXY; pX2Þ ¼ EðpXYpX2Þ − EðpXYÞEðpX2Þ;
¼ 2gXgYσ2X;

where we use the following derivation:
EQ-TARGET;temp:intralink-;sec7.9;116;630

EðpXYpX2Þ ¼ Eðg3XgYÞ þ Eðg3XnYÞ→0 þ Eð3g2XgYnXÞ→0

þ Eð3g2XnXn2YÞ→0 þ Eð3gXgYn2XÞ
þ Eð3gXn2XnYÞ→0 þ EðgYn3XÞ→0

þ Eðn3XnYÞ→0;

¼ g3XgY þ 3gXgYσ2X:

EðpXYÞEðpX2Þ ¼ gXgYðg2X þ σ2XÞ;
¼ g3XgY þ gXgYσ2X:

In the case that the channel is not shared, the covariance is calculated as follows:
EQ-TARGET;temp:intralink-;sec7.9;116;483

CðpXY; pZ2Þ ¼ EðpXYpZ2Þ − EðpXYÞEðpZ2Þ;
¼ 0;

where we use the following derivation:
EQ-TARGET;temp:intralink-;sec7.9;116;421

EðpXYpZ2Þ ¼ EðgXgYg2ZÞ þ EðgXg2ZnYÞ→0 þ EðgYg2ZnXÞ→0

þ Eðg2ZnXnYÞ→0 þ Eð2gXgYgZnZÞ→0

þ Eð2gXgZnYnZÞ→0 þ Eð2gYgZnXnZÞ→0

þ Eð2gZnXnYnZÞ→0 þ EðgXgYn2ZÞ
þ EðgXnYn2ZÞ→0 þ EðgYnXn2ZÞ→0 þ EðnXnYn2ZÞ→0;

¼ gXgYg2Z þ gXgYσ2Z:

EðpXYÞEðpZ2Þ ¼ gXgYðg2Z þ σ2ZÞ;
¼ gXgYg2Z þ gXgYσ2Z:
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