Multispectral Demosaicking with Novel Guide Image Generation and Residual Interpolation

Yusuke Monno¹, Daisuke Kiku¹, Sunao Kikuchi², Masayuki Tanaka¹, and Masatoshi Okutomi¹ ¹Tokyo Institute of Technology ² Olympus R&D Center

Introduction

- Multispectral imaging has received increasing attention in many image processing fields.
- Existing multispectral imaging systems still have limitations in size, cost, etc.

Our developed System

• We developed a "practical" one-shot multispectral imaging system. • It works in "real-time" and has potential for many applications[9].

Multi-camera system

Multi-shot system

Active lighting system

Multispectral image (5-band)

Clear without

zipper artifacts

In this paper, we improved the demosaicking performance!

Proposed Algorithm

• We improved our previous algorithm[2] in the two points.

Experimental Results

Dataset

• We captured ground-truth 5-band images of 16 scenes.

1. Comparison with existing and our previous algorithms

Interpolated G Interpolated R Interpolated Or Interpolated Cy Interpolated B

1. Novel Guide Image Generation

• We exploit multispectral correlations for effectively generating the guide image.

2. Residual Interpolation

• We extend our proposed residual interpolation (Kiku et. al. [4]) for multispectral demosaicking.

GF [2]

Ground-truth Or band

Proposed

2. Comparison with existing 3-band Bayer algorithms • Evaluation is performed in the sRGB domain.

Ground-truth sRGB

GBTF [7] (3band)

LPA [8] (3band) **Proposed** (5band)

3. Numerical performance (average of 16 scenes)

• We perform the interpolation in the residual domain.

Gradients of R-G

Gradients of R

G band

Gradients of residual

Tentative estimate

High-frequency components are reduced in the "residual" domain.

5band	Proposed	54.93	52.31	51.08	49.42	49.86	42.49	47.19	41.26	1.88
	GF [2]	53.12	51.06	49.61	47.94	48.89	40.75	45.73	40.51	2.06
	AKU [1]	52.19	47.80	48.78	45.38	48.06	38.14	44.20	39.53	2.34
	BTES [6]	49.38	45.00	48.60	42.78	44.93	34.46	42.95	36.36	2.91
3band	LPA [8]	NA	NA	NA	NA	NA	30.39	41.24	36.71	3.68
	GBTF [7]	NA	NA	NA	NA	NA	29.52	39.44	35.35	4.00

References

Project page: http://www.ok.ctrl.titech.ac.jp/res/MSI/MSI_e.html

[1] Y. Monno, M. Tanaka, and M. Okutomi, "Multispectral demosaicking using adaptive kernel upsampling," ICIP2011. [2] Y. Monno, M. Tanaka, and M. Okutomi, "Multispectral demosaicking using guided filter," SPIE Electronic Imaging 2012. [3] Y. Monno, T. Kitao, M. Tanaka, and M. Okutomi, "Optimal spectral sensitivity functions for a single-camera one-shot multispectral imaging system," ICIP2012.

[4] D. Kiku, Y. Monno, M. Tanaka, and M. Okutomi, "Residual interpolation for color image demosaicking," ICIP2013. [5] K. He, J. Sun, and X. Tang, "Guided image filtering," ECCV2010.

[6] L. Miao, et. al., "Binary tree-based generic demosaicking algorithm for multispectral filter arrays," TIP2006. [7] I. Pekkucuksen and Y. Altunbasak, "Gradient based threshold free color filter array interpolation," ICIP2010. [8] D. Paliy, et. al., "Spatially adaptive color filter array interpolation for noiseless and noisy data," IJIST2007. [9] D. McDuff et. al., "Improvements in Remote Cardio-Pulmonary Measurement Using a Five Band Digital Camera," TBE2014.