
ECSE 526B
Artificial Intelligence

Instructor: Yon Visell

Assignment #1:
Black & White

by

Samuel Audet
saudet@cim.mcgill.ca

ID: 260184380

January 30, 2006
(Revised May 3, 2006)

Electrical and Computer Engineering Department
3480 University Street Room 633

Montréal, Québec,
Canada H3A 2K6

mailto:saudet@cim.mcgill.ca

Introduction

For this assignment, I programmed a game-playing agent for playing the “Black & White” board
game described on the Web site of the course. The following techniques were used during the
design of this agent: the minimax algorithm with alpha-beta pruning, iterative deepening, and a
transpositional table using Zobrist keys.

AI Programming Design

The minimax algorithm [2] that I implemented is actually and unknowingly a variant of what is
sometimes called "negamax". In this form, the algorithm is reduced to a single recursive function
instead of two and is useful only for zero-sum games, such as "Black & White", where if one player
loses (utility = -1), the other wins (utility = +1), or if the game ends in a draw, the utility is 0 for
both and the sum is again 0. My function, minimax(alpha, beta, depth) is implemented as a “max
value” function, and implements alpha-beta pruning. It is called recursively in this manner: utility
= -minimax(-beta, -alpha, depth+1), so that child nodes get negative values, and switched alpha
and beta, effectively using the recursion as a “min value” function and back to a “max value”
function for the next level of recursion.

However, since it is not possible to reach the leaf nodes of the game tree in any amount of
tractable time, a call to an heuristic evaluation function at the cutoff depth is needed. These nodes
are treated as leaf nodes after heuristic evaluation. My evaluation is made up of four features: the
number of protected pieces (north-south and/or east-west, each protection counting as one), the
number of doubly protected pieces (both north-south and east-west), the number of lined up
pieces squared on each row, column and diagonal (squared to emphasize the fact that aligned
pieces are more valuable than randomly placed ones), and the number of threats made on
opponent pieces for possible capture on next turn. Weighted sums are computed for both the
player and his opponent, and the sum of the opponent is subtracted from the one of the player,
since a good value for the opponent is bad for the player. To find optimal weights for these
features, I tried a simple training method where the computer is pitted against itself for days
playing games with incrementally different sets of weights. My hope was to find an undeniably
stronger set of weights (the global maximum), but alas, I would need to perform more
comprehensive analyzes with reinforcement learning methods. Based on an intuitive analysis of
the numbers and after a few trials, I settled on the following weights: 1, 1, 4 and 3 for the
protection, double protection, line-up and attack features respectively. To demonstrate the
performance improvement, making the computer play against itself, one side with the heuristic
evaluation and the other without, the former always wins.

From these weights, it appears piece alignment is an important feature as hypothesized, but it is
surprising to see that it seems threats are more important than protected positions. This
underscores a possible fact that threats are an important strategy leading to "magical" alignment
of pieces on the board, or maybe it is simply the fear of being threaten by the opponent that
makes for a stronger survival feature.

Next, I implemented iterative deepening [2]. It serves more purposes than initially thought. First,
it makes it easy to implement a time limited search. If the maximum allotted amount of time is
used up, it simply aborts the current iteration and returns the results of the last completed
iteration. Second, it helps the agent go to the shallowest goal state instead of possibly trying to
reach a deep goal state if a shallower iteration was not performed previously. Third, each iteration
is bootstrapped with the previously best evaluated successor node. Only the value of the first ply is
used, but the transpositional table is not flushed. This helps the effectiveness of the alpha-beta
pruning that is greatly enhanced if it has an initial good guess at the best successor node.

As an additional improvement and as my solution to the cycles problem, I implemented a
transpositional table over a hash table using Zobrist keys [1]. Zobrist keys are calculated as
follows. First, on startup or off-line, random numbers are generated for each positions on the
board (25), and for each possible state (empty, white or black). It is also necessary to generate two
other random numbers for the two players (one of which can be zero), for a total of 25*3+2 = 77

random numbers stored in an array. Then, for each node, the key can be computed as follows:

key = 0
for each of the 25 positions
 key = key XOR random_number[position][piece at position (empty, black or white)]
key = key XOR random_number[player of current ply (black or white)]

Therefore, these keys are quickly calculated (and even more quickly updated due to the reversible
nature of XOR operations), and are sufficiently randomly distributed, if the initial numbers are
sufficiently random. I use 64 bit keys in my implementation, but only the lower 23 bits are used for
the hash code. The higher bits are stored as data in the hash table for collision detection. The rest
of the data stored consists of: the "height" of the stored node (how deep of a tree does it
represent), the evaluated value of the node, and a value type, indicating if the value is an exact
value of the node, or if it is an upper or lower bound on the exact value. The latter cases happen
as part of the alpha-beta pruning algorithm. Cycles produce the same nodes many times, but the
alpha and beta values received from parent nodes usually differ, so by analyzing the value of the
previous and current values of alpha and beta, it is possible to deduce new boundaries (values of
alpha and beta) if needed [1]. This is a weak kind of “move ordering”, and helps the alpha-beta
algorithm do its job on previously encountered nodes, even if it has not previously calculated exact
values. Also, values for nodes with bigger “heights” than those stored in the hash table are not
returned by the transpositional table. Doing so would result in reduced “intelligence”.

This transpositional table helps the program gain about one more ply. After 7 seconds on my old
Athlon 1000MHz, the program frequently reaches the 9th ply without the transpositional table,
but frequently reaches the 10th ply with it. It is not a huge improvement, and does not bring big
improvements in game play either, but the effects are there and notable. To demonstrate the
performance improvements, here are parts of the listings produced by gprof (an execution
profiler) for a typical execution of the program with an equal cutoff depth of 8 for both executions
with and without transpositional table:

Text 1 – Profiler results without transpositional table

Text 2 – Profiler results with transpositional table

Clearly from those listings the work load by using the transpositional table has been cut by almost
half (cumulative seconds), and a lot of the load has shifted away from the evaluation function
evaluateAs(). This is to be expected, since a lot of leaf nodes do not need to be reevaluated
frequently anymore. The effect is less pronounced on the other functions which still need to be
called for non-leaf nodes: minimax(), getSuccessors(), movePiece() and play().

Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls s/call s/call name
 36.65 203.69 203.69 79787900 0.00 0.00 Node::evaluateAs(Player)
 26.09 348.67 144.98 714 0.20 0.70 Node::minimax(int, int, int, Node*, bool)
 19.55 457.33 108.67 207789344 0.00 0.00 Node::movePiece(int, int, int, int)
 9.99 512.85 55.52 102 0.54 5.42 Node::play(int, bool, bool)
 7.19 552.82 39.97 12157093 0.00 0.00 Node::getSuccessors(Node**)

Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls Ks/call Ks/call name
 45.43 470.32 470.32 188593084 0.00 0.00 Node::evaluateAs(Player)
 21.93 697.32 227.00 451501900 0.00 0.00 Node::movePiece(int, int, int, int)
 16.56 868.77 171.45 714 0.00 0.00 Node::minimax(int, int, int, Node*, bool)
 10.34 975.85 107.08 28920869 0.00 0.00 Node::getSuccessors(Node**)
 5.20 1029.64 53.79 102 0.00 0.01 Node::play(int, bool, bool)

Concluding Comments

For this assignment, I programmed a “Black & White” game-playing agent based on the following
artificial intelligence techniques: the minimax algorithm with alpha-beta pruning, iterative
deepening, and a transpositional table using Zobrist keys. I designed as well an heuristic
evaluation function making this agent along with the rest of the techniques a possibly strong
player.

As shortcomings, the heuristic evaluation function is obviously not optimal, and can be optimized
using better methods such as reinforcement learning. Better move ordering could also be
implemented to optimize the alpha-beta pruning even further.

Although not directly related to artificial intelligence, the code is not optimal in terms of memory
bandwidth. Nodes should be compacted in smaller representations that could be as well possibly
computed faster. On the plus side, I used a dedicated stack of nodes to more easily manage my
nodes using pointers, but with minimal overhead on creation and without relying on C++'s stack
and its limited scope.

As a final note, it would be a good idea to add a maximum number of repeated moves in the rules
of the game. When my program plays against itself, both sides frequently end up repeating the
same move over and over again, one side usually sticking to the moves because it is the only way
to prevent the other side from winning, while the winning side, of course, does not want to let go
of such a high valued opportunity.

References

[1] Martin Fierz, Strategy Game Programming - Advanced Techniques,
http://www.fierz.ch/strategy2.htm , 2002

[2] Stuart Russell and Peter Norvig, Artifical Intelligence: A Modern Approach, Prentice Hall, New
Jersey, Second Edition, 2003.

http://www.fierz.ch/strategy2.htm

	Introduction
	AI Programming Design
	Concluding Comments
	References

