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Abstract

For this report, the view synthesis algorithm from
the paper of the same title by Fitzgibbon et al. [1] was
implemented. In this report, the geometric and proba-
bilistic background of the algorithm, as well as neces-
sary optimizations required to make the problem more
tractable, are succinctly detailed. Results are then pre-
sented and analyzed. It was found that although the
use of the texture prior improves the resulting rendered
images, the initial photoconsistent estimate without
use of the prior is of very good visual quality. There is
still however a lot of room for improvements in terms
of computational performance.

1 Introduction

As my course project for ECSE 626 - Statistical
Computer Vision, I decided to implement the view
synthesis algorithm developed by Fitzgibbon et al. [1].
In the view synthesis problem, we are interested in in-
ferring new plausible images of a static 3D scene that
are rendered from an existing set of images taken from
the 3D scene from different orientations than the ones
of interest. In this report, the algorithm is first briefly
described in terms geometric and probabilistic formu-
lations, and then in terms of optimized implementa-
tion. Finally, results are presented and analyzed.

2 Summary of the Algorithm

In all view synthesis problems, what we would like
to accomplish is to generate new images corresponding
to viewpoints (camera positions) that are interpolated
from a given set of viewpoints and their correspond-
ing images. The problem is formulated in terms of 3D
space, since the world from which the images are taken
from is a 3D world. For this reason, the formulation
of the problem always has a multiple view geometry

component. The authors then used a Bayesian prob-
abilistic approach in order to find the most probable
color to every pixel in the new virtual image. In this
report, the geometric formulation of the algorithm is
described in the first subsection. The Bayesian ap-
proach is detailed in the following subsections. Fi-
nally, in order to make the algorithm tractable, some
simplifications and optimizations were made, and they
are the subject of the final subsection of this section.

2.1 The Geometric Formulation

We are given n projection camera matrices P =
P1, ..., Pn and their associated images planes I =
I1, ...In. A projection matrix incorporates all the lin-
ear information related to the internal parameters of
the camera, its viewpoint and thus its position in
space. For a given 3D point X, its projection into
the 2D image plane of a camera with matrix P3×4 is
given by x = P3×4X. Moreover, P = M3×3[I| − C]
where C is the position of the camera center in space,
which is therefore equal to C = −M−1p4 where p4

is the fourth column vector of P . All 3D points in
space will intersect with the camera center when pro-
jected onto the camera’s image plane. The direction
vector D departing from the camera center through a
2D point x on the image plane is D = [[M−1x]T , 0]T

and is a point at infinity since D4 = 0. Therefore, we
can define the following equation in order to find finite
3D points that all project back to x:

X(z) = C + zD, (1)

where z is a variable indicating “depth”. More de-
tailed information on this subject can be found in the
book by Hartley and Zisserman [2], in the section en-
titled The projective camera.

2.2 The Bayesian Formulation

Let us define a new virtual image IV , the new view
we would like to infer from the given set of images
and projection matrices. Note that the position and
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orientation of the new viewpoint, defined by a projec-
tion matrix PV , must be computed as an interpolation
from the set of real projection matrices. The scene is
also assumed to be static so that to which surface a
3D point refers to does not change with time for the
whole sequence of images. In this context, what we
are interested in is therefore the maximum a posteri-
ori (MAP) estimate of the image IV given the images
I, their corresponding matrices P, and the given new
viewpoint PV :

p(IV |I,P, PV ) =
p(I,P|IV , PV )p(IV |PV )

p(I,P|PV )
. (2)

The term p(I,P|IV , PV ) is the likelihood of the im-
age IV . It represents the forward problem where the
joint probability of the images I and matrices P is de-
fined by given image IV and matrix PV . Since the
function is defined only in terms of projection matri-
ces and of color intensity values from the images con-
taining no 3D structural information, it was called by
the authors the photoconsistency constraint since max-
imizing this likelihood will result in the best match
with regards to color intensities, but with no regards
for the actual 3D structure of the scene. The usual
way to regularize the problem is by imposing a smooth
continuous depth map. However, in real world scenes,
this continuity does not hold, for example at the edge
of an object in front of a background wall.

Therefore, the authors used a different approach
to regularization which makes use of textures (pixels
and their neighborhoods) as prior. The prior term
p(IV |PV ) in equation 2 defines the probability of tex-
ture occurrence. Naturally occurring textures are not
random and have a certain structure to them. Making
use of this information, common natural textures can
thus “boost” the likelihood term, but it can also be
penalized for improbable occurrences.

Finally, note that since we are optimizing for IV ,
the normalizing denominator does not need to be com-
puted.

2.3 The Likelihood: Photoconsistency

For the photoconsistency constraint, it is assumed
that the color at each of the m pixel sites is indepen-
dent, and so the likelihood can be rewritten as follows:

p(I,P|IV , PV ) =
∏m

i=1 p(I,P|IV (xi), PV )
p(I,P|PV )m−1

. (3)

Again, since the denominator is not a function of
IV , it does not need to be computed.

For a given 2D point x and matrix PV , we can gen-
erate all 3D points X(z) that map to x by equation 1.
Assuming that at least one of the viewpoints has a
clear view of the same object as imaged by PV in IV ,
and that the projected color is accurate (i.e.: Lam-
bertian surface) then the set of all possible colors for
IV (x) = IV (X(z)) at depth z can be reduced to a set
of colors from the views I. The function of possible
colors is thus defined as:

c(i, z) = Ii(PiX(z)) for 1 ≤ i ≤ n, (4)

and set c of colors is defined as:

c = {c(i, z)|1 ≤ i ≤ n, z ≥ 0} (5)

Since c contains all the information from I and P
that is relevant to IV (x), we can reformulate the like-
lihood term for a given pixel as follows:

pphoto(IV (x)) = p(I,P|IV (x), PV ) = p(c|IV (x), PV ).
(6)

2.4 The Prior: Texture

Although not described as such by the authors, the
prior was understood to be defined as a Markov Ran-
dom Field [3] with conditional probability:

ptexture(IV (x)) = p(IV (x)|PV , N(IV ,x)), (7)

where N(IV ,x) is a patch, a sub-image, of the 5×5
neighborhood system surrounding x in IV .

2.5 A Gibbs Random Field Formulation

As it turns out, both the prior and the likelihood
can be defined in terms of Gibbs Random Fields [3],
even if the authors did not explicitly state it as such.
In the case of the likelihood, the noise was modeled
with Gaussian densities, and the Gaussian density is
a special case of the Gibbs density. For the prior, since
it is defined as a Markov Random Field, it is “auto-
matically” equivalent to a Gibbs Random Field [3].
Assuming the given viewpoints are independent from
each other and marginalizing over z, the form of equa-
tion 6 (the likelihood) was defined as follows:

pphoto(IV (x)) = Z−1
p

∫
z

n∏
i=1

exp(−βρ(||IV (x)−c(i, z)||))dz,

(8)
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and the form of the prior, as follows:

ptexture(IV (x)) = Z−1
t exp(−λ min

T∈T
||T −N(IV ,x)||),

(9)
where β and λ are parameters actually representing

the inverse temperatures of the random fields, and Zp

and Zt being normalization constants, again do not
need to be computed since they do not depend on
IV . ρ(x) = |x| is a robust kernel (more on this in the
results section) and T represents the set of natural
textures. The energy values of the fields are therefore:

Ephoto(IV (x)) =
∫

z

n∑
i=1

−βρ(||IV (x)− c(i, z)||)dz

(10)
and

Etexture(IV (x)) = −λ min
T∈T

||T −N(IV ,x)||. (11)

The authors have noted that Ephoto is very easily
affected by small changes to β and that it would need
to be optimized, possibly over another integral. Due to
this difficulty, they decided to approximate the value
of Ephoto as follows after noting that it did not usually
affect the modes of the distribution:

Ephoto(IV (x)) ≈ min
z

n∑
i=1

−ρ(||IV (x)− c(i, z)||). (12)

Finally, the optimization problem over IV can be
summarized as finding the minimum of:

E(IV ) =
m∑

i=1

Ephoto(IV (xi)) + Etexture(IV (xi)). (13)

2.6 Optimized Implementation

As the first practical limitation, z is quantized, typ-
ically using 500 values bounded by presets zmin and
zmax.

Next, the whole Gibbs Random Field as defined by
equation 13 could be estimated directly using global
optimization methods such as simulated annealing
or Monte Carlo Markov Chain samplers such as the
Metropolis and the Gibbs samplers, but both the like-
lihood and prior terms are not only very expensive to
compute, the function contains a lot of local minima.
Attaining a global minimum, or even a good local min-
imum would certainly take a very long time. In order
to make the problem more tractable, the modes of the
likelihood (equation 12) are first identified using 12

iterations of gradient descent randomly restarted 20
times (a very good random number generator is re-
quired). This is justified by the authors by the fact
that the likelihood over the depth z contains only a
few minima (about 5 on average) which usually con-
tains the color being searched for. For the implemen-
tation used in this report, instead of a fixed number of
iterations of gradient descent, a steepest descent ap-
proach with finite differences was used. Very negligi-
ble progress (< 0.1%) made on the energy value or on
the color value itself were used as termination criteria.
Resulting modes are then clustered for efficiency.

Now from this limited set of modes, one still needs
to include the texture prior in order to regularize the
problem. A database needs to be defined. Ideally a
very large database of natural textures should be used,
but in practice, it suffices to take patches from the
input images and use those patches as textures for the
evaluation of the prior. More precisely, for one given
pixel in the new virtual view, one patch with center
x = PiX(z) is taken from each image i at all depths
z. Those patches are used directly with equation 11
as the set T.

In order to compute 13, the authors used the iter-
ated conditional modes (ICM) algorithm. With this
algorithm, the most likely photoconsistent mode over
all pixels is first computed, giving a first estimate of
the new image I0

V . From this first estimate, each pixel
is considered and its value set to the minimum of equa-
tion 13. In effect, it tries to locally minimize the en-
ergy, one pixel at a time, but by giving priority to the
photoconsistency likelihood. A few iterations over all
the pixels in the image are necessary. However, one it-
eration is still very expensive, and the authors used an
approximation of this method. From the modes previ-
ously computed, they let the algorithm choose which
of the modes minimizes 13. Moreover, the modes
are sorted by increasing amounts of energy so that
Ephoto(IV (x)) ≈ ||IV (x) − Ii−1

V (x)|| can be used as
approximation to equation 12 for iteration i, since a
change in IV (x) can only result in a configuration with
more photoconsistency energy, or at least this is the
assumption. It can be shown that this procedure can
be accomplished by selecting as follows the value of a
pixel x for iteration i:

Ii
V (x) = arg min

c∈Imodes
V (x)

∣∣∣∣∣∣∣∣Ii−1
V (x) + λT (0)

1 + λ
− c

∣∣∣∣∣∣∣∣ ,

(14)
where Imodes

V (x) are the photoconsistency modes at
pixel x and T (0) is the center pixel value of the texture
patch that minimizes equation 11. λ = 1.0 was used.
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(a) ML estimated image. (b) MAP estimated image. (c) Real image. (d) Error image |(b) − (c)|.

Figure 1: Comparison between the reconstructed image and the real image for viewpoint number 76 of the monkey
sequence. The last remaining 26 views of the sequence of 89 images were used for reconstruction. The MAP
estimate is from the third iteration. The error image’s intensity range is [0,10] with saturation for larger errors.

3 Results and Analysis

The implementation of the algorithm done for this
report was tested over a range of projection cam-
era matrices interpolated from the given monkey se-
quence available on the authors’ Web site http://
www.robots.ox.ac.uk/~awf/ibr/. The results for
one test image, figures 1, are used here for discussion.
Image and camera matrix number 76 were removed
from the set of input images and matrices. Out of the
full sequence of 89 views, reconstruction was then at-
tempted using the 26 last remaining views, which are
closest to view number 76.

Strangely enough, possibly thanks to the use of
steepest descent, the images obtained from the new
implementation are much cleaner than the ones pre-
sented in the paper. As one can see from figure 1(a),
the photoconsistent maximum likelihood estimate of
the view is already very clean, with only a few outliers
present. The texture prior smooths things out a bit
(figure 1(b)), but almost nothing needs to be cleaned
up. The only two big remaining problems with this
image when compared to the real image (figure 1(c))
are with the brown structure on the background wall
in the upper left corner and with the black strip on
the monkey’s nose. For most of the pixels in those
areas, the colors found to have the minimum energy
are incorrect. Even though the true colors are ac-
tually also modes discovered by the photoconsistent
likelihood, the texture prior cannot recover from this
mistake since these patches of wrong color still pro-
duce valid smooth natural textures. The error image
(figure 1(d)) clearly indicates the problematic areas.
However, it is remarkable that 98.9% of the pixels are
within a Manhattan distance of 10 from their true col-
ors in the RGB color space.

Other incorrectly colored pixels also arise from the
fact that the true colors are not always minima of
equation 12. The authors introduced a robust kernel

(M-estimator) ρ(x) = |x| in order to mitigate the is-
sue, but it does not completely solve it. The problem
occurs when, at a given depth, more than half of the
colors returned by the available views differ from the
real color of interest. In this case, the absolute value
kernel usually fails and the color of interest does not
become a minimum. Two main scenarios were iden-
tified where this problem occurred. First, when one
large patch of mostly uniform color occludes the ob-
ject of interest in more than half of the views. Sec-
ond, when a large enough patch of mostly uniform
color somewhere in space is actually mapped behind
or in front of the object of interest. The patch is large
enough to permit multiple viewpoints to see the same
color, even though it violates geometric constraints,
as it is mapped to an invalid depth. There are a few
things not all mentioned in the paper that can be done
to help:

• Manually tweak zmin and zmax, or even create
intervals within the range of z so that empty areas
of space are not considered.

• As input data, use only a few views close to the
virtual view. Closer views have more overlap and
less occlusion, reducing the possibility of unre-
lated information from interacting together.

• Use a more robust kernel that will create min-
ima even in the situations discussed above. Un-
fortunately, more robust kernels such as ρ(x) =
1 − exp(−|x|/k) and ρ(x) = min(|x|, k) also cre-
ate a lot of other spurious minima, which makes
it very hard for the gradient descent algorithm to
narrow down the number of possible colors.

• Perform regularization on the depth map as well,
using for example an operator akin to a median
smoothing filter, in order to smooth out high
frequency discontinuities while leaving unaffected
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discontinuities at the edges of objects. Other
techniques analogous to space carving should also
provide significant improvements as the authors
pointed out.

On the other hand, one might think that with all
those optimizations and approximations that the al-
gorithm would run reasonably fast, but alas, it is still
excruciatingly slow. To render a full 640× 480 image,
even with a well coded implementation running on the
fastest personal computer, it might well take over one
whole 24 hour day.

4 Conclusion

For this report, the view synthesis algorithm of
Fitzgibbon et al. [1] was implemented and tested. The
details of the algorithm were summarized, and results
presented as well as analyzed. It was found that al-
though the algorithm effectively regularizes the syn-
thesized image using texture information as prior, the
quality of the initial photoconsistent estimate is al-
ready very high. The algorithm however still needs
major improvements in terms of computational per-
formance.

With regards to myself, a lot of the concepts that
I learned during my ESCE 626 - Statistical Com-
puter Vision course greatly helped me understand the
material of the paper. In particular, I was able to
immediately understand the initial Bayesian formu-
lation and thus the reason why equation 3 holds. I
was also able to notice that the forms used for the
likelihood and the prior are actually Gibbs densities.
This allowed me to use tools related to Gibbs Random
Fields and to fully grasp the simplifications made and
other concepts such as why global optimization ap-
proaches like simulated annealing or Markov Chain
Monte Carlo sampling would be too slow for this appli-
cation. Amazingly, I find, it truly made me see things
in a different light, and put me in a better position to
built possible improvements on this algorithm in the
future.
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