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Unsupervised Learning for Object Recognition

Samuel Audet

Abstract— This report consists of a literature review of papers
dealing with object recognition using unsupervised learning
techniques. Five papers that brought important contributions
to the field are summarized, analyzed and compared. It was
found that unsupervised object recognition was considered first
as an image segmentation problem, but new unsupervised object
learning techniques have been developed requiring no image
segmentation at all. In this report, we however stipulate that
the latter techniques could possibly benefit from unsupervised
image segmentation to provide even better unsupervised object
recognition.

Index Terms— Unsupervised learning, computer vision, image
segmentation, object recognition, content-based image retrieval,
expectation-maximization, clustering.

I. INTRODUCTION

N the future, unsupervised learning techniques could have

a great impact on how new problems are approached. The
traditional supervised learning methods used in many fields,
including computer vision, requires a supervisor to guide
the machine, labeling inputs with the outputs we want the
machine to learn from. However, this labeling process is a
very tedious, especially when the number of data to label
is in the millions of items, such as images on the Internet,
where content-based image retrieval would be very useful. To
overcome this problem, unsupervised learning techniques are
required. In computer vision, unsupervised object recognition
has traditionally been approached as an image segmentation
problem first [1], [2], [3], but more recently new method
requiring no segmentation whatsoever [4], [5] have emerged.

II. LITERATURE REVIEW

With regards to unsupervised techniques in general, the
main application in computer vision has traditionally been
image segmentation [1], [2], [3]. The segmentation here refers
to the splitting of an image into regions with similar color or
texture, or both. More recently, however, a different approach
to object recognition [4], [5] was born. With this approach,
images are not segmented at all, but the program can still
learn and recognize objects within the background clutter of
the images without any supervision other than providing the
algorithm with a set of training images all containing the object
to be learned and recognized.

A. Image Segmentation

Jain and Fakkorhnia [1] appear to be the firsts to develop
a remarkably efficient unsupervised image segmentation tech-
nique. Their approach is inspired by the multi-channel filtering
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theory of the human visual system which describes how the
eyes and the related regions of the brain filter and interpret
textures. The multi-channel theory stipulates that a visual
signal is split and processed in parallel by a bank of filters
very similar in properties to Gabor filters, which they make
use of for their segmentation technique.

A 2D Gabor function is a function that consists of a
sinusoidal wave-front function of a given frequency and phase,
in a given orientation on the plane, modulated by a 2D
Gaussian function of given variances to limit the sinusoidal
in space. A Gabor filter is the use of such a Gabor function as
a basis function for a wavelet transform. A wavelet transform
is similar in nature to a window Fourier transform, but unlike
the Fourier transform where the window size is fixed, the
window size for the wavelet transform changes according to
the frequency, allowing better localization for higher frequen-
cies. However, Gabor functions are not perfectly orthogonal
wavelets, and their use is mainly justified by the evidence
from biological systems.

The authors use a fixed set of Gabor filters at orien-
tation intervals of 45 degrees, and the chosen frequencies
(cycles/image-width) are all powers of 2 (i.e.: octaves), up to
1/4 of the image width, multiplied by v/2. For computational
efficiency, they select a subset of these filters by choosing
those that can reconstruct the test images with a maximum
relative pixel-to-pixel error of 5%. After filtering an image
with this reduced bank of filters, each of the many produced
images are again transformed with a non-linear function,
tanh(algapor (2, y)), which acts as an activation function,
again justified by biological evidence. For each filtered image,
a feature image is computed for which each pixel is set to the
texture energy: the sum of the activated pixels over a small
Gaussian window. In addition to the previous feature images,
two more images consisting of the pixel coordinates are used.
They emphasize the fact that nearby pixels are more likely to
be part of the same cluster. To cluster regions together, it is
first assumed there are K texture categories. A square-error
clustering algorithm known as CLUSTER [6] is then used to
group together in an optimal manner the K categories. For
computational performance, the original underlying intensity
patterns, which are in the first iterations clustered in small
regions, are used directly with a minimum distance classifier
to more quickly classify other similar regions of the image.

The experimental results are very convincing, and moreover
its failure modes are very similar to humans’. However,
the number of texture categories needs to be specified as
a parameter, which is a serious limitation when applied to
unsupervised learning for object recognition. Also no color
information is used, only texture information. Panjwani and
Healy [2] use a different a approach. Using Markov random
fields, they are able to overcome the limitations of the previous
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Gabor filter approach. Color information is also added to the
models of the textures.

In their work, they make use of a special case of the Markov
random fields: the Gaussian Markov random fields, which
work well in modeling a wide range of textures. With this
approach, a given pixel in a given color channel is linearly
dependent on its 26-connected immediate neighbors in both
geometric and “warped” color space (the standard RGB color
space). The 3 x 26 model parameters are coefficients that
dictate the linear relationship between a pixel and all its
neighbors. They also represent the colored texture.

The conditional probability density function of a colored
pixel given its neighborhood (texture) is then defined as a zero-
mean 3D Gaussian function, whose covariance noise matrix is
computed from the pixels in the region and the parameters. In
this way, if a pixel and its neighbors completely agree with
the texture parameters, the input value for the PDF will be
Zero.

The segmentation algorithm uses Gaussian Markov random
fields, and proceeds in three phases: region splitting, conser-
vative clustering, and stepwise optimal clustering.

In the region splitting phase, the image is divided into
smaller and smaller square regions, until it is safely determined
that the texture in each region is uniform. The initial regions
could simply be the pixels and their immediate neighborhood,
but it is more computationally optimal to not split regions
which are “obviously” uniform. The uniformity test consists
of computing the mean color error of all pixels in the region,
and comparing it with the mean color error of each of the
four possible sub-square-regions. If the difference is below
some threshold, and if the covariance of the region is also
below another certain threshold, then the region is not split.
The threshold values are very conservative in order to split
regions unless uniformity is very statistically significant.

Then, the conservative merging proceeds locally by merg-
ing similar adjacent regions. This phase is used to remove
“obvious” workload from the next phase. A few tricks are
used to estimate the similarity between two adjacent regions
candidate for merging: the color mean differences need to be
below a certain threshold, the covariance matrix needs to be
small (tested with a threshold similar to the one used during
the region splitting phase), and if the regions are not too
small for pseudo-likelihood estimation (see next paragraph),
it needs to be below another threshold. Again, the threshold
values are very conservative in order not to merge regions
unless uniformity is very statistically significant. All candidate
regions are processed until equilibrium.

Finally, stepwise optimal merging continues to process
merging operations until a given stopping criterion is reached.
Since we are interested in the parameters of the texture,
the PDF associated with each pixel is the likelihood of the
parameters. Multiplying PDF values of all pixels in a given
region provides a pseudo-likelihood. This is obviously not
a true likelihood since neighboring pixels are dependent of
each other by definition, but using this value for a maximum-
likelihood approach proved to give good results for parameter
estimation. This approach can be partially justified by the fact
that a locally defined Markov random field is equivalent to

a globally defined Gibbs random field. In this manner, for
two adjacent regions candidate for merging, the algorithm
proceeds by comparing the pseudo-likelihood of the whole
image (by multiplying the pseudo-likelihood of all the regions)
when the two regions are left separate, and when they are
merged. All adjacent regions to a region are likewise tested,
and the pair with the maximum pseudo-likelihood wins, and
are merged if the difference in global pseudo-likelihood, which
will increase as merging progresses, is less than a given
stopping criterion. Other candidate regions are processed until
the stopping criterion is reached. Again, if one region of the
pair is too small for pseudo-likelihood estimation, color mean
difference tricks are used, but without thresholds. They will
be merged if no better pairs exist.

Mainly thanks to its use of colored textures, this unsuper-
vised technique for image segmentation gives better results
than the previous one using Gabor filters, especially in the
case of natural images. It also does not required the number
of regions to be specified in advance. The algorithm will
find by itself the best segmentation and number of regions
given the stopping criterion. Also, given its local “Marko-
vian” nature, the algorithm can easily be implemented on a
parallel architecture for improved performance. Nonetheless,
image segmentation is only part of the object recognition
problem. Blobworld [3] uses image segmentation as the basis
for a content-based image retrieval system. Its expectation
maximization approach to image segmentation is again quite
different from, but similar in the results to the “Markovian”
approach.

In Blobworld, color, position and texture features are ex-
tracted from each pixel. The color feature is simply the color
components of the pixel in the L*a*b color space, more
perceptually uniform to humans than the RGB color space.
Likewise, the position feature is simply the (z,y) position of
the pixel in the image. The texture features are however more
elaborate. The texture information is taken solely from the
grayscale intensity component of the pixel, or in this case the
L* component of the L*a*b components. An approximation
of the gradient VI(z,y) is computed using first order finite
differences. The second moment matrix is approximated by
convolution M (x,y) = G(x,y) * VI(z,y)VI(x,y)T, where
G(z,y) is a 2D symmetric Gaussian function with parameter
o denoting the scale of the texture feature. In order to choose
o, a measure of polarity is computed. The polarity indicates
the extent to which the orientation of the neighboring pixels’
gradient is similar. It is computed for all pixels with o, =
k/2,k = 0,1,...,7. Each polarity image pj thus obtained
is smoothed with a Gaussian kernel of standard deviation
20}, producing p}.(z,y). The selected o for a given pixel is

the one for which W < 0.02. This criterion
is met when the scale of the Gaussian and the polarity
encompasses the spatial frequency of the texture, and thus
gives a measure of the scale of the texture. If the contrast
of the underpinning pixels is less than 0.1, the scale is set
to 0. This said, the texture feature for a pixel is actually
described by ac, pg~c and ¢, where k* corresponds to the

chosen scale, a = 1—X\3/ A1, to the anisotropy, ¢ = 2¢/A1 + Ao
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to the normalized texture contrast, where A\ >= Ao are the
eigenvalues of the matrix M (z,y). a and pj are modulated
by the contrast ¢ so they approach O when the contrast also
approaches O (i.e.: no texture). This texture descriptor is also
thus invariant to orientation and scale. The original image is
then smoothed with a Gaussian filter of the given scale at each
pixel, effectively removing texture information while keeping
color and structure. Note that the L*a*b color features are
affected by this smoothing.

The expectation maximization algorithm [7] is then used
on this eight-dimensional feature space. The algorithm can be
briefly summarized by this equation:

Opir = argméapr(zm,Hn)lnp(w,zw), (1

where 0,, 1 is the new estimate of the parameters, 6,, is the
previous estimate of the parameters, z is the latent or hidden
variables, and x is the observed data. p(x, z|6) is the likelihood
of the parameters for our observed data and hidden variables.
The summation calculates the expectation of the log-likelihood
with respect to the probability of the hidden variables knowing
our data and the previous estimate of the parameters. In other
words, it returns how likely the new parameters are given
what we know about the data and the previous estimate of
the parameters. The maximum over possible new parameters
is used as part of the next iteration. The algorithm iterates
until convergence to a certain stopping criterion based on the
improvement of the log-likelihood or on the convergence of
the estimated parameters. The algorithm is only guaranteed to
converge to a local maximum, so domain specific initialization
tricks might be required if it does not converge to satisfactory
values.

In the case of Blobworld, the parameters are the means
and covariances of the mixture of Gaussians representing each
feature for each of the K segmented regions. The observed
data are the eight features per pixel, and the hidden variables
indicate which segmented region each pixel belongs to. In
Blobworld, the algorithm is restarted four times with added
Gaussian noise to the initial mean estimates in order to avoid
low local maxima. The algorithm is further run over a range of
K from 2 to 5, and the log-likelihood is used as a measure of
how good of a fit the segmentation is. A Minimum Description
Length criterion, which is an operational form of Occam’s
razor,

dim 6
arg max 1np(m,z|9K)—¥lnN , 2)

where N is the number of pixels, is used to determine the
minimum value of K needed to represent the data.

The description of each region or blob is stored in memory
as 5 x 10 x 10 bins in L*a*b color space, and as mean
contrast and anisotropy. In order to get a matching score
for recognition of blobs within other images, a difference
measure between histograms and mean values is calculated
using weighted Euclidean distances.

One of the disadvantages of this segmentation method com-
pared to the previous ones is that it will sometimes split large

uniform regions. This is due to the use of pixel positions in the
EM algorithm, but for image retrieval uses it is not deemed
by the authors to be a serious problem. It segments images
sufficiently well for this practical application it was developed
for. Nonetheless, as the authors point out, sophisticated object
recognition is the ultimate goal. The simple comparison of
histograms is an insufficient descriptor for real-world objects.
Recently, such unsupervised object recognition algorithms
have emerged.

B. Feature Based Recognition

There are two important contributions [4], [5] to the problem
of completely unsupervised object recognition, where the latter
follows on the former’s work. In this framework, an object
model is represented as the shape of the constellation of rigid
parts (features). The registration of training images, the part
selection and the estimation of the model parameters are all
accomplished automatically. This technique however requires
a data set composed of images all containing the object to
be later recognized. Before training, it cannot discriminate
between multiple object classes by itself.

First, Weber et al. [4] define a generative probabilistic
model with three random variables: observed rigid parts X°
(comprised of a number of observed part candidates, denoted
by their (z,y) coordinates, for each part type), and two hidden
variables: h being the hidden hypothesis of which candidate
parts belong to the foreground (the object to be recognized),
and x™ consisting of valid foreground rigid parts that are not
observed (missing). Then they define two new auxiliary hidden
variables: b and n. b encodes in a binary fashion which part
types have been detected (1), and which have been missed or
occluded (0). n indicates the number of background candidates
for each part type. Noting that b and n are fully determined
by h and X° (sufficient statistics), the probabilistic model is
defined as:

p(X?,x™, h,n,b) = p(X°, x™|h,n)p(hn, b)p(n)p(b),
3)

where p(n) is modeled by a Poisson distribution, which
relays the assumption of independence between part types in
the background as well as the independence of their positions.
For simplicity, p(b) is modeled with a table of independent
probabilities over the total number of part types, but modeling
joint probabilities might be more powerful. Also note that b
becomes parameters to be estimated. p(h|n, b) is defined sim-
ply as a uniform density for all h consistent with b and n, and
0 elsewhere. p(X°,x™|h,n) is rewritten as pyq(2z)ppg(Xbg)
where z is the set of all observed and missing foreground
parts, and Xpg is the observed background parts. These two
densities, the foreground and the background, are assumed
to be independent. ps,(z) is modeled as a joint Gaussian
density whose means are centered around the position of the
foreground parts and are parameters to be estimated, and the
observed background parts pyg(Xbg) are modeled as a uniform
density over the image.

In order to select parts that describe the objects well, points
of interest are first detected from the training images using the
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Forstner operator. This operator selects corners, intersections
and center points of circular patterns. It produces about 150
points for each of the training images used by the authors. To
reduce this number, a k-means clustering algorithm is applied
to the patterns (small grayscale sub-image) of those points
to reduce their number to about 100 for the whole set of
training images. Only clusters with more than 10 patterns
are kept, leaving out unpopular patterns, and new part images
are produced by averaging over the patterns in each cluster.
Although the number of parts remaining after this operation
is much reduced, background parts are still present.

In order to train the model, foreground parts need to be
identified. The first issue that needs to be addressed is the
number of parts that should be used. If not enough parts are
used, then the model is not descriptive enough and does not
perform well. If too many parts are used, the complexity of
the model increases and we risk overfitting the training data.
This is again the concept behind Occam’s razor. In order to
select which parts to keep a greedy search is carried out over
the possible set of parts. For a given number of parts that
will be used (F'), which parts to choose is determined by
random selection. The model parameters are then estimated
with the training images by expectation maximization, as
described previously, on the probability density function of
equation [3] given the observed data, the hidden variables and
the parameters to estimate. The classification performance is
then observed on the validation image set, which is separate
from the training image set in order to statistically validate the
new model. New part configurations that improve performance
are kept. This process is akin to Monte Carlo sampling. The
process ends when all part configurations have been tried, or
after a given number of trials. The variation in performance
with different values of F' is observed as well. Tests with cars
and faces show that values for F' of 4 for faces and 5 for cars
are optimal.

Classification is defined in terms of the object being present
or absent from the image. The maximum a posteriori proba-
bility (MAP) hypothesis (present or absent) is chosen. Once
model parameters are estimated, by application of the Bayes’
theorem, the ratio % can be computed and is used
along with a threshold to make a decision for classification.
Given the data, the classification provides a clue as to how
close to the model the appearance of each part is, and how
closely their position matches with the model, the shape.

The algorithm was validated by experimenting with 200
images showing cars and 200 images showing faces. 100
background images of each environment are also included in
each set. After training on 100 face images, and classifying
the remaining 100 face images and 100 background images
from the face environment, 93.5% of the images were correctly
classified. For cars, the accuracy was of 86.5%. This method
although very effective has some limitations. It is not invariant
to scale, and does not take into account changes in appearance
(viewpoint and lighting conditions). The approach by Fergus
et al. [5] follows on from this work. It adds to the model
representation better invariance to scale and appearance.

First, they replace the Forstner operator by the one devel-
oped by Kadir and Brady [8]. This new operator computes the

histogram P(x,y, s) over the image at all regions with center
(z,y) and scale (radius) s. The entropy (from information
theory) of the histograms H(P(x,y, s)) at different scales is
then calculated and the points with local maximum entropy
(meaning the most different ones) are selected as candidate
parts at scale s. Parts with maximum saliency %H (scale
normalized) are used as parts for learning and recognition.

This new scale information from the operator is added to
the location and shape variable X ° by normalizing all position
measurements to the scale of the parts. The scale information
is also added to the probabilistic model as a new relative scale
variable S, modeled by another Gaussian density.

Another variable added to the model is the appearance A of
a part. It is modeled by PCA where the 10 to 15 first principal
components (eigenvectors of the covariance matrix) are used
to describe the appearance of 11 x 11 pixels patches. A is also
modeled by a joint Gaussian density, but with no covariances,
only variances. A background model is also stored as a joint
Gaussian in the same manner.

The new variables are added as such into the probabilistic
model designed by Weber et al. [4] and the same expectation
maximization algorithm is used over the new set of variables.
However, as optimization, the A* space-search algorithm is
used and makes for a “considerable improvement” in perfor-
mance, although they provide no basis for comparison. Recog-
nition is also performed similarly to the previous method,
but again with the new set of variables. To avoid overfitting
data, large datasets (up to 400 images in size) are used. The
performance of the classifier was found to be remarkably
consistent with only very slight variations (e.g.: ~1%) in
classification error when giving different initial estimates to
the EM algorithm.

During experiments, the number of parts used was 6,
compared to 4 and 5 for the previous method [4]. Both of
these algorithms are compared in the new paper [5]. In the
case of motorbikes, performance increases from 84% (ROC)
to 92.5% using the new scale and appearance variables. For
airplanes, it jumps from 68% to 90.2%. Moreover, when
executing the recognition phase on images without the object
of interest, it was found that the ROC was about 50% on
average, so it can be considered good at discriminating images.
The general formulation of the framework is very general, and
these particular implementations could be improved upon. A
possibly better feature extractor operator, like SIFT, as well as
use of color information should provide even better recognition
rates. Also multi-modal densities are not supported. They
could be useful for example in the case of radically different
appearances belonging to the same part type (for example,
faces with and without sunglasses). Affine and projective
transform invariance would also improve recognition under
3D out-of-plane rotation.

III. CONCLUSION

Unsupervised learning techniques in computer vision have
come a long way in just a few years. Algorithms for detecting
and recognizing objects in a scene without any required pre-
processing of the images are now available. These techniques
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cannot however cluster objects in classes by themselves.
Images in the training data set must be manually separated
into all the different classes of objects before training. On
the other hand, image segmentation techniques have also
evolved up to the point where the segmented regions could be
used in conjunction with such object recognition techniques.
Merging these techniques could greatly reduce the number
of hypotheses generated by feature (part) detection, allowing
more processing power to be dedicated to automatic clustering
of multiple classes of objects during the training phase.
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