Monochrome and Color Polarization Demosaicking Using Edge-Aware Residual Interpolation

Miki Morimatsu, Yusuke Monno, Masayuki Tanaka, and Masatoshi Okutomi Tokyo Institute of Technology, Tokyo, Japan

Session: ELI-01 Electronic Imaging ICIP2020

Background

Polarization

- Physical property of electromagnetic wave

Polarization image

- Set of images obtained using a linear polarizer with different orientations

Polarization image acquisition

Polarization image

Background

Polarization model

Stokes vector

$$\boldsymbol{s} = \begin{bmatrix} s_0 \\ s_1 \\ s_2 \\ s_3 \end{bmatrix} = \begin{bmatrix} I_{max} + I_{min} \\ (I_{max} - I_{min})\cos(2\phi) \\ (I_{max} - I_{min})\sin(2\phi) \\ 0 \end{bmatrix} = \begin{bmatrix} I_0 + I_{90} \\ I_0 - I_{90} \\ I_{45} - I_{135} \\ 0 \end{bmatrix}$$

Intensity (I) $I = I_{max} + I_{min} = s_0$

Degree of linear polarization (DoP: ρ)

$$\rho = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} = \frac{\sqrt{s_1^2 + s_2^2}}{s_0}$$

Angle of linear polarization (AoP: ϕ)

$$\phi = \frac{1}{2} \tan^{-1} \frac{s_2}{s_1}$$

Background: Applications

Specular removal [1]

Reflection separation [2]

Polarimetric multi-view stereo [3]

MVIR

Polarimetric MVIR (Ours)

Polarimetric multi-view inverse rendering [4]

- [1] L V. Jospin et al. "Embedded polarizing filters to separate diffuse and specular reflection," ACCV, 2018.
- [2] P. Wieschollek et al. "Separating reflection and transmission images in the wild," ECCV, 2018.
- [3] Z. Cui et al. "Polarimetric multi-view stereo," CVPR, 2017.
- [4] J. Zhao, Y. Monno, M. Okutomi, "Polarimetric multi-view inverse rendering," ECCV, 2020.

Background: Image Acquisition

- Rotating polarizer
 - Higher quality images \bigcirc
 - **X** Not applicable to dynamic scenes and videos

- Polarization filter array (PFA)
 - Dynamic scenes and videos
 - **X** Sparse mosaic data

Rotating polarizer

3CCD

Our Contributions

- Propose a monochrome polarization filter array (MPFA) demosaicking method based on edge-aware residual interpolation.
- Extend the proposed monochrome polarization demosaicking method to color polarization filter array (CPFA) demosaicking.
- Construct a full 12-channel color-polarization image dataset.

Existing MPFA Demosaicking Method

PPID [5]: Method based on pseudo-panchromatic image difference

- Demosaicking method based on a pseudo-panchromatic image

(a guide image **not considering edge information**)

[5] S. Mihoubi et al. "Survey of demosaicking methods for polarization filter array images," Sensors, 2018.

Proposed MPFA Demosaicking Method

Edge-aware residual interpolation (EARI)

- Generate an edge-aware guide image

Four-directional intensity estimation

Intensity relationship : $S0 = I_0 + I_{90} = I_{45} + I_{135}$

Four-directional intensity estimation

Intensity relationship : $S0 = I_0 + I_{90} = I_{45} + I_{135}$

Example of North direction

North direction

90

135

90

45 90

0 135

45 90

Estimated intensity using (I_0, I_{90}) $\widehat{S0}_{(0,90)} = I_0 + I_{90}$

Four-directional intensity estimation

Intensity relationship : $S0 = I_0 + I_{90} = I_{45} + I_{135}$

Example of North direction

North direction

90	45	90
135	0	135
90	45	90

Estimated intensity using (I_0, I_{90}) $\widehat{S0}_{(0,90)} = I_0 + I_{90}$

Estimated intensity using (I_{45}, I_{135}) $\widehat{S0}_{(45,135)} = I_{45} + I_{135}$

Four-directional intensity estimation

Intensity relationship : $S0 = I_0 + I_{90} = I_{45} + I_{135}$

North direction intensity

2

Example of North direction

North direction

45

0

45 90

90

135

90

135

90

$$\widehat{S0} = \frac{\widehat{S0}_{(0,90)} + \widehat{S0}_{(45,135)}}{2}$$

Four-directional intensity estimation

Intensity relationship : $S0 = I_0 + I_{90} = I_{45} + I_{135}$

Example of North direction

North direction

45

0

45 90

135

90

90

North direction intensity

$$\widehat{S0} = \frac{\widehat{S0}_{(0,90)} + \widehat{S0}_{(45,135)}}{2}$$

Calculated by filtering

$$\widehat{S0}_n = X_n = F_n \otimes I_{MPFA}$$
$$F_n = \begin{bmatrix} 1/8 & 1/4 & 1/8 \\ 1/8 & 1/4 & 1/8 \\ 0 & 0 & 0 \end{bmatrix}$$

Weight calculation

Example of North direction

Estimated intensity : $\widehat{S0}_{(0,90)}$, $\widehat{S0}_{(45,135)}$

North direction

0

45 90

45 90

135

90

135

90

Intensity difference : $\Delta \widehat{S0} = \widehat{S0}_{(0,90)} - \widehat{S0}_{(45,135)}$ If intensities are constant (meaning no edge) $\rightarrow \Delta \widehat{S0} = 0$

Weight calculation

Example of North direction

Estimated intensity : 3

$$\widehat{S0}_{(0,90)}, \ \widehat{S0}_{(45,135)}$$

North direction

0

90

135

90

45 90

45 90

Intensity difference : $\Delta \widehat{S0} = \widehat{S0}_{(0,90)} - \widehat{S0}_{(45,135)}$ Calculated by filtering $\Delta \widehat{\mathbf{S0}}_n = \mathbf{H}_n \otimes \mathbf{I}_{MPFA}$

$$\boldsymbol{H}_n = \begin{bmatrix} 1/2 & -1 & 1/2 \\ -1/2 & 1 & -1/2 \\ 0 & 0 & 0 \end{bmatrix}$$

Weight calculation

Example of North direction

North direction

90	45	90
135	0	135
90	45	90

 S_n : Smoothing filter

Weighted averaging

- Generate the guide image by weighted averaging of four-directional intensities.

Guide image :
$$G(i,j) = \frac{\sum_{k} W_{k}(i,j)X_{k}(i,j)}{\sum_{k} W_{k}(i,j)}$$
, X_{k} : Four-directional Intensity
 W_{k} : Weight
 $k = n, e, w, s$

Proposed MPFA Demosaicking Method

Edge-aware residual interpolation (EARI)

- Interpolate missing values by residual interpolation with the edge-aware guide.

Residual Interpolation

Interpolation method based on a guide image [6]

Extension to CPFA Demosaicking

Color-Polarization Image Dataset

Setups

- JAI CV-M9GE 3-CCD camera
- SIGMAKOKI SPF-50C-32 linear polarizer
- Captured using the rotating linear polarizer placed in front of the 3-CCD camera.
- Captured 1,000 images and averaged them to reduce noise.

Setups

Color-Polarization Image Dataset

MPFA demosaicking results

Using the green-channel images of our color-polarization dataset

Full ground-truth images

. AoP

[5] S. Mihoubi et al. "Survey of demosaicking methods for polarization filter array images," Sensors, 2018. [7] J. Zhang et al. "Image interpolation for division of focal plane polarimeters with intensity correlation," Opt. Exp., 2016.

MPFA demosaicking results

PSNR : high **Angle error** : low

Better performance

Method	PSNR							Angle error	
	I_0	I_{45}	I_{90}	I_{135}	S0	S1	S2	DoP	AoP
Bilinear	42.34	41.58	42.50	41.58	44.89	46.14	45.03	33.70	21.36
Bicubic	43.45	42.48	43.63	42.48	46.22	47.00	45.73	34.46	20.64
ICPC [7]	43.10	42.22	43.23	42.22	45.78	47.01	45.73	34.75	20.50
PPID [5]	46.52	44.52	46.91	44.34	48.94	50.56	47.59	36.96	17.65
EARI (Ours)	47.39	44.91	47.84	44.63	49.62	51.48	47.83	36.79	17.13

[5] S. Mihoubi et al. "Survey of demosaicking methods for polarization filter array images," Sensors, 2018. [7] J. Zhang et al. "Image interpolation for division of focal plane polarimeters with intensity correlation," Opt. Exp., 2016.

CPFA demosaicking results

CPFA demosaicking results

CPSNR : high **Angle error** : low

Better performance

	Method	CPSNR					Angle error			
(color polarization)		I_0	I_{45}	I_{90}	I_{135}	S0	S1	S2	DoP	AoP
	Bilinear	35.32	34.94	35.47	35.00	36.31	43.29	41.28	31.20	24.98
	Bilinear	38.34	37.79	38.50	37.86	40.03	44.09	42.58	31.96	24.15
RI	Bicubic	38.65	38.05	38.81	38.12	40.43	44.30	42.72	32.05	24.11
	ICPC [5]	38.61	38.01	38.77	38.09	40.33	44.49	42.87	32.36	23.86
	PPID [4]	39.37	38.68	39.57	38.71	40.73	46.34	44.04	33.98	22.40
	EARI (Ours)	39.41	38.72	39.62	38.72	40.76	46.49	44.10	33.74	22.18

- Proposed an MPFA demosaicking method based on edge-aware residual interpolation (EARI) and extend it to CPFA demosaicking.
- Constructed full color-polarization image dataset captured using a 3-CCD camera and a rotating polarizer.
- Demonstrated that our EARI-based method outperforms existing methods.
- The dataset and the source code of our proposed method are available.
 http://www.ok.sc.e.titech.ac.jp/res/PolarDem/index.html