

VIO-Aided Structure from Motion Under Challenging Environments

ICIT 2021

Author: Zijie Jiang¹, Hajime Taira¹, Naoyuki Miyashita², Masatoshi Okutomi¹

¹Tokyo Institute of Technology ²Olympus Coorporation

3D Reconstruction from multiple images

Recover 3D geometry and camera poses from sets of images of a common scene.

Related Work

• Structure from Motion (COLMAP, Schonberger et al., 2016)

Challenging Environments

• Degradation of visual information

Texture-less area

Duplicated structure

Challenging Environments

• Limitation of existing methods

Our Pipeline

• We adopt the camera pose estimation of visual-inertial odometry (VIO) into each step of the SfM pipeline.

Our Approach: VIO-Aided Geometric Verification

Our Pipeline

• We adopt the camera pose estimation of visual-inertial odometry (VIO) into each step of the SfM pipeline.

Our Approach: Batched Incremental Reconstruction

• We split the image sequence into several batches and register them **incrementally**.

Batched Incremental Reconstruction Triangulation Outlier Points Filtering

Our Approach: Bundle adjustment with Relative Pose Constraint

• Incremental optimization using relative poses

 $\hfill\square$ cost function

Our Approach: Bundle adjustment with Relative Pose Constraint

Incremental optimization using relative poses

 \Box cost function

Results

• Quantitative evaluation of recovered camera poses (EuRoC Dataset)

Sequence	Visual methods						Visual-inertial methods					
	COLMAP		ORB-SLAM2		DSO		OKVIS		VINS-Mono		Ours	
Name	RMSE	ME	RMSE	ME	RMSE	ME	RMSE	ME	RMSE	ME	RMSE	ME
V1_02_medium	0.043	0.040	0.064	0.063	0.598	0.213	0.067	0.062	0.060	0.057	0.022	0.019
V1_03_difficult	0.054	0.051	0.531	0.235	0.925	0.935	0.105	0.089	0.173	0.131	0.043	0.032
V2_02_medium	0.029	0.032	0.056	0.056	0.092	0.080	0.081	0.058	0.124	0.103	0.014	0.012
V2_03_difficult	0.041	0.036	0.079	0.073	1.386	1.008	-	-	0.191	0.153	0.029	0.021
MH_03_medium	0.040	0.034	0.038	0.032	0.172	0.135	0.146	0.143	0.080	0.067	0.035	0.029
MH_04_difficult	0.095	0.078	0.059	0.049	0.172	0.171	0.138	0.131	0.124	0.123	0.092	0.077
MH_05_difficult	0.084	0.064	0.068	0.055	0.102	0.093	0.261	0.227	0.133	0.110	0.083	0.072

- RMSE : the root mean square position error in meters
- ME : the median position error in meters
- Red : Best
- Blue : Second best

Qualitative Results

• Indoor scene (EuRoC Dataset)

Qualitative Results

• Mine scene (OIVIO Dataset)

Qualitative Results

• Tunnel scene (OIVIO Dataset)

Conclusion

- We propose an SfM-based 3D reconstruction pipeline that effectively takes advantage of the camera pose information from a VIO.
- Our method provides accurate camera poses and 3D points by adopting the camera pose estimation of VIO into each step of the SfM pipeline.
- The experiments on publicly available datasets demonstrate that our system can achieve an accurate and robust 3D reconstruction in challenging environments containing less visual information.

Thank you for listening!